Abstract
Over 35 years of research suggests that endogenous hypothalamic serotonin (5-hydroxytryptamine) plays an important part in within-meal satiation and post-meal satiety processes. Thus, the serotonin system has provided a viable target for weight control, critical to the action of at least two effective anti-obesity treatments, both producing clinically significant weight loss over a year or more. Numerous serotonin receptor subtypes have been identified; of these, serotonin 5-HT1B and 5-HT2C receptors have been specifically recognised as mediators of serotonin-induced satiety.
A number of serotonergic drugs, including selective serotonin reuptake inhibitors (SSRIs), dexfenfluramine and 5-HT2C receptor agonists, have been shown to significantly attenuate rodent bodyweight gain. This effect is strongly associated with marked hypophagia and is probably mediated by the hypothalamic melanocortin system. Additionally, sibutramine, dexfenfluramine, fluoxetine and the 5-HT2C receptor agonist chlorophenylpiperazine (mCPP) have all been shown to modify appetite in both lean and obese humans, resulting in reduced caloric intake. Clinical studies demonstrate serotonergic drugs specifically reduce appetite prior to and following the consumption of fixed caloric loads, and cause a reduction in pre-meal appetite and caloric intake at ad libitum meals. Weight loss in the obese has also been produced by treatment with both the serotonin precursor 5-hydroxytryptophan and the preferential 5-HT2C receptor agonist mCPP.
A new generation of 5-HT2C receptor selective agonists have been developed and at least one, lorcaserin (APD356), is currently undergoing clinical trials. In addition, 5-HT6 receptor antagonists such as PRX-07034 and BVT74316 have been shown to potently reduce food intake and bodyweight gain in rodent models and have recently entered clinical trials. However, the role of the 5-HT6 receptor in the expression of appetite remains to be determined. The hope is that these drugs will not only be free of their predecessors’ adverse effect profiles, but will also be equally or more effective at regulating appetite and controlling bodyweight.




Similar content being viewed by others
References
Haiford JCG, Blundell JE. Separate systems for serotonin and leptin in appetite control. Ann Med 2000; 32: 222–32
Vickers SP, Dourish CT. Serotonin receptor ligands and the treatment of obesity. Curr Opin Invest Drugs 2004; 5: 377–88
Bentley JM, Adams DR, Bebbington D. Indoline derivatives as 5-HT2C receptor agonists. Bioorg Med Chem Let 2004; 14: 2367–70
Bray GA, York DA. Studies on food intake of genetically obese rats. Am J Physiol 1972; 233: 176–9
Jesperson S, Scheel-Kruger J. Evidence for a difference in mechanism of action between fenfluramine- and amphetamine-induced anorexia. J Pharm Pharmacol 1973; 22: 637–8
Barrett AM, McSherry L. Inhibition of drug-induced anorexia in rats by methysergide. J Pharm Pharmacol 1975; 27: 889–95
Pinder BM, Brogden RN, Sawyer PR, et al. Fenfluramine: a review of its pharmacological properties and therapeutic efficacy in obesity. Drugs 1975; 10: 241–323
Garattini S, Samanin R. Anorectic drugs and brain neurotransmitters. In: Silverstone T, editor. Food intake and appetite. Berlin: Dahlem Konferenzen, 1976: 82–208
MacKenzie RG, Hoebel BG, Ducret RP, et al. Hyperphagia following intraventricular p-chlorophenylalanine-, leucine- or tryptophan-methyl esters: lack of correlation with whole brain serotonin levels. Pharmacol Biochem Behav 1979; 10: 951–5
Blundell JE. Is there a role for serotonin (5-hydroxytryptamine) in feeding? Int J Obesity 1977; 1: 15–42
Hoyer D, Martin G. 5-HT receptor classification and nomenclature: towards a harmonization with the human genome. Neuropharmacology 1997; 36: 419–28
Blundell JE, Halford JCG. Serotonin and appetite regulation: implications for the treatment of obesity. CNS Drugs 1998; 9: 473–95
Rogers P, McKibbin PE, Williams G. Acute fenfluramine administration reduces neuropeptide Y concentrations in specific hypothalamic regions of the rat: possible implications for the anorectic effect of fenfluramine. Peptides 1991; 12: 251–5
Brown CM, Coscina DV. Ineffectiveness of hypothalamic serotonin to block neuropeptide Y-induced feeding. Pharmacol Biochem Behav 1995; 51: 641–6
Compan V, Dusticier N, Nieoullon A, et al. Opposite changes in striatal neuropeptide Y immunoreactivity after partial and complete serotonergic depletion in the rat. Synapse 1996; 24: 87–96
Currie PJ. Integration of hypothalamic feeding and metabolic signals: focus on neuropeptide Y. Appetite 2003; 41: 335–7
Heisler LK, Cowley MA, Tecott LH, et al. Activation of central melanocortin pathways by fenfluramine. Science 2002; 297: 609–11
Heisler LK, Cowley MA, Kishi T, et al. Central serotonin and melanocortin pathways regulating energy homeostasis. N Y Acad Sci 2003; 994: 169–74
Heisler LK, Jobst EE, Sutton GM, et al. Serotonin reciprocally regulated melanocortin neurons to modulate food intake. Neuron 2006; 51: 239–49
Nambu T, Sakurai T, Mizukami K, et al. Distribution of orexin neurons in the adult rat brain. Brain Res 1999; 827: 243–60
Hervieu GJ, Cluderay JE, Harrison DC, et al. Gene expression and protein distribution of the orexin-1 receptor in the rat brain and spinal cord. Neuroscience 2001; 103: 777–97
Marcus JN, Aschkenasim CJ, Lee CE, et al. Differential expression of orexin receptors 1 and 2 in the rat brain. J Comp Neurol 2001; 435: 6–25
Brown RE, Sergeeva OA, Eriksson KS, et al. Convergent excitation of dorsal raphe serotonin neurons by multiple arousal systems (orexin/hypocretin, histamine and noradrenaline). J Neurosci 2002; 22: 8850–9
Cai XJ, Liu XH, Evans M, et al. Orexins and feeding: special occasions or everyday occurrence? Reg Peptides 2002; 104: 1–9
Orlando G, Brunetti Ll, Di Nisio C, et al. Effects of cocaine- and amphetamine-regulated transcript peptide, leptin and orexins on hypothalamic serotonin release. Eur J Pharmacol 2001; 430: 269–72
Matsuzaki I, Sakurai T, Kunii K, et al. Involvement of the serotonergic system in orexin-induced behavioral alterations in rats. Reg Peptides 2002; 104: 119–23
Brown RE, Sergeeva O, Eriksson KS, et al. Orexin A excites serotonergic neurons in the dorsal raphe nucleus of the rat. Neuropharmacology 2001; 40: 457–9
Simansky KJ. Serotoninergic control of the organisation of feeding and satiety. Behav Brain Res 1996; 73: 37–42
Hewitt KN, Lee MD, Dourish CT, et al. Serotonin 2C receptor agonists and the behavioural satiety sequence in mice. Pharmacol Biochem Behav 2002; 71: 691–700
Collin M, Backberg M, Onnestam K, et al. 5-HT1A receptor immunoreactivity in hypothalamic neurons involved in body weight control. Neuroreport 2002; 13: 945–51
Muraki Y, Yamanaka A, Tsujino N, et al. Serotonergic regulation of the orexin/hypocretin neurons through the 5-HT1A receptor. J Neurosci 2004; 24: 7159–66
Barrafan-Majia MG, Castilla-Serna L, Calderon-Guzman D, et al. Effect of nutritional status and ozone exposure on rat brain serotonin. Arch Med Res 2002; 33: 15–9
Xie QW. Experimental studies on changes of neuroendocrine functions during starvation and refeeding. Neuroendocrinology 1991; 53: 52–9
Nishimura F, Nishihara M, Torii K, et al. Changes in responsiveness to serotonin on rat ventromedial hypothalamic neurons after food deprivation. Physiol Behav 1996; 60: 7–12
Wolfe BW, Metzger ED, Stollar C. The effects of dieting on plasma tryptophan concentration and food intake in healthy women. Physiol Behav 1997; 61: 537–41
Cowen PJ, Clifford EM, Walsh AES, et al. Moderate dieting causes 5-HT2C supersensitization. Psychol Med 1996; 26: 1156–9
Varma M, Torelli GF, Meguid MM, et al. Potential strategies for ameliorating early cancer anorexia. J Surg Res 1998; 81: 69–76
Yang ZJ, Blaha V, Meguid MM, et al. Interleukin-1α injection into ventromedial hypothalamic nucleus of normal rats depresses food intake and increases release of dopamine and serotonin. Pharmacol Biochem Behav 1999; 62: 61–5
Cangiano C, Laviano A, Muscaritoli M, et al. Cancer anorexia: new pathogenic and therapeutic insights. Nutrition 1996; 12: S48–51
Cangiano C, Testa U, Muscaritoli M, et al. Cytokines, tryptophan and anorexia in cancer patients before and after surgical tumor ablation. Anticancer Res 1994; 14: 1451–5
Meguid MM, Fetissov SO, Blaha V, et al. Dopamine and serotonin VMN release is related to feeding status in obese and lean Zucker rats. Neuroreport 2000; 11: 2069–72
Svec F, Thompson H, Porter J. Levels of hypothalamic neurotransmitters in lean and obese Zucker rats. Nutr Neurosci 2002; 5: 321–6
Harrold JA, Widdowson PS, Clapham JC, et al. Individual severity of dietary obesity in unselected Wistar rats: relationship with hyperphagia. Am J Physiol 2000; 279: E340–7
Hassanain M, Levin BE. Dysregulation of hypothalamic serotonin turnover in diet-induced obese rats. Brain Res 2002; 929: 175–80
Breum L, Rasmussen MH, Hilsted J. Twenty-four-hour plasma tryptophan concentrations and ratios are below normal in obese subjects and are not normalized by substantial weight reduction. Am J Clin Nutr 2003; 77: 1112–8
Clifton PG. The neuropharmacology of meal patterning. In: Cooper SJ, editor. Ethology and psychopharmacology. Chichester: Wiley, 1994: 313–28
Neill JC, Cooper SJ. Evidence that d-fenfluramine anorexia is mediated by 5-HT1 receptors. Psychopharmacology 1989; 97: 213–8
Samanin R, Mennini T, Bendotti C, et al. Evidence that central 5-HT2C receptors do not play an important role in anorectic activity of d-fenfluramine in the rat. Neuropharmacology 1989; 28: 465–9
Neill JC, Bendotti C, Samanin R. Studies on the role of 5-HT receptors in satiation and the effect of d-fenfluramine in the runway test. Eur J Pharmacol 1990; 190: 105–12
Simansky JJ, Nicklous DM. Parabrachial infusion of — fenfluramine reduces food intake: blockade by the 5-HT1B antagonist SB-216641. Pharmacol Biochem Behav 2002; 71: 681–90
Vickers SP, Dourish CT, Kennett GA. Evidence that hypophagia induced by d-fenfluramine and d-norfenfluramine in the rat is mediated by 5-HT2C receptors. Neuropharmacology 2001; 41: 200–9
Wong DT, Reid LR, Threlkeld PG. Suppression of food intake in rats by fluoxetine: comparison of enantiomers and effects of serotonin antagonists. Pharmacol Biochem Behav 1988; 31: 475–9
Grignaschi G, Samanin R. Role of serotonin and catecholamines in brain in feeding suppressant effects of fluoxetine. Neuropharmacology 1992; 31: 445–9
Lightowler S, Wood M, Brown T, et al. An investigation of the mechanism responsible for fluoxetine-induced hypophagia in rats. Eur J Pharmacol 1996; 296: 137–43
Lee MD, Clifton PG. Partial reversal of fluoxetine anorexia by the 5-HT antagonist metergoline. Psychopharmacology 1992; 107: 359–64
Halford JCG, Blundell JE. Metergoline antagonizes fluoxetine induced suppression of food intake but not changes in the behavioural satiety sequence. Pharmacol Biochem Behav 1996; 54: 745–51
Koe BK, Weissman A, Welch WM, et al. Sertraline, 1S,4S-N-methyl-4(3,4-dichlorophenyl)-1,2,3,4-tetrahydro-1-naphathylamine, a new uptake inhibitor with selectivity for serotonin. J Pharmacol Exp Ther 1983; 266: 686–700
Lucki I, Kreider MS, Simansky KJ. Reduction of feeding behaviour by the serotonin uptake inhibitor sertraline. Psychopharmacology 1988; 96: 289–95
Kennett GA, Curzon G. Evidence that the hypophagia induced by mCPP and TFMPP requires 5-HT1C and 5-HT1B receptors; hypophagia induced by RU-24969 only requires 5-HT1B receptors. Psychopharmacology 1988; 96: 93–100
Kennett GA, Curzon G. Evidence that mCPP may have behavioural effects mediated by central 5-HT1C receptors. Br J Pharmacol 1988; 94: 137–47
Kennett GA, Curzon G. Potencies of antagonists indicate that 5-HT1C receptors mediate 1–3(chlorophenyl)piperazine-induced hypophagia. BrJ Pharmacol 1991; 10: 2016–20
Halford JCG, Blundell JE. The 5-HT1B receptor agonist CP-94,253 reduces food intake and preserves the behavioural satiety sequence. Physiol Behav 1996; 60: 933–9
Lee MD, Simansky KJ. CP-94,253: a selective serotoninlB (5-HT1B) agonist that promotes satiety. Psychopharmacology 1997; 131: 264–70
Schreiber R, Selbach K, Asmussen M, et al. Effects of serotonin1/2 receptor agonists on dark-phase food and water intake in rats. Pharmacol Biochem Behav 2000; 67: 291–305
Clifton PG, Lee MD, Dourish CT. Similarities in the action of Ro 60-0175, a 5-HT2C receptor agonist, and d-fenfluramine on feeding patterns in the rat. Psychopharmacology 2000; 152: 256–67
Lee MD, Kennett GA, Dourish CT, et al. 5-HT1B receptors modulate components of satiety in the rat: behavioural and pharmacological analyses of the selective serotonin1B agonist CP-94,253. Psychopharmacology 2002; 164: 49–60
Blundell JE, Latham CJ. Pharmacological manipulation of feeding behaviour: possible influences of serotonin and dopamine on food intake. In: Garattini S, Samanin R, editors. Central mechanisms of anorectic drugs. New York (NY): Raven Press, 1978: 83–109
Halford JCG, Wanninayake SCD, Blundell JE. Behavioural satiety sequence (BSS) for the diagnosis of drug action on food intake. Pharmacol Biochem Behav 1998; 61: 159–68
Blundell JE, Latham CJ. Characteristic adjustments to the structure of feeding behaviour following pharmacological treatments: effects of amphetamine and fenfluramine and the antagonism by pimozide and metergoline. Pharmacol Biochem Behav 1980; 12: 717–22
Blundell JE, McArthur RA. Behavioural flux and feeding: continuous monitoring of food intake and food selection, and the video-recording of appetitive and satiety sequences for the analysis of drug action. In: Samanin R, Garattini S, editors. Anorectic agents: mechanisms of action and tolerance. New York (NY): Raven Press, 1981: 19–43
Halford JCG, Blundell JE. 5-Hydroxytryptaminergic drugs compared on the behavioural sequence associated with satiety. Br J Pharmacol 1993; 100: 95
Clifton PG, Barnfield AMC, Philcox L. A behavioural profile of fluoxetine induced anorexia. Psychopharmacology 1989; 97: 89–95
Simansky KJ, Viadya AH. Behavioural mechanisms for the anorectic actions of the serotonin (5-HT) uptake inhibitor sertraline in rats: comparison with directly acting agonists. Brain Res Bull 1990; 25: 953–60
McGuirk J, Muscat R, Willner P. Effects of the 5-HT uptake inhibitors femoxetine and parpexetine, and the 5-HT1A agonist cltoprazine, on the behavioural satiety sequence. Pharmacol Biochem Behav 1992; 41: 801–5
Kitchener SJ, Dourish CT. An examination of the behavioural specificity of hypophagia induced by 5-HT1B, 5-HT1C and 5-HT2 receptor agonists using the post-prandial sequence in rats. Psychopharmacology 1994; 113: 368–77
Tecott LH, Sun LM, Akanna SF, et al. Eating disorder and epilepsy in mice lacking 5-HT2C serotonin receptors. Nature 1995; 374: 542–6
Nonogaki K, Abdullah L, Goulding EH, et al. Hyperactivity and reduced energy cost of physical activity in serotonin 5-HT2C receptor mutant mice. Diabetes 2003; 52: 315–20
Vickers SP, Clifton PG, Dourish CT, et al. Reduced satiating effect of d-fenfluramine in serotonin 5-HT2C receptor mutant mice. Psychopharmacology 1999; 143: 309–14
Bouwknecht JA, van der Guten J, Hijsenm TH, et al. Male and female 5-HT1B receptor knockout mice have higher body weights than wildtypes. Physiol Behav 2001; 74: 507–16
Silverstone T, Goodall E. The clinical pharmacology of appetite suppressant drugs. Int J Obes 1984; 8 (1): 23–33
Cangiano C, Ceci F, Casinco A, et al. Eating behaviour and adherence to dietary prescription in obese adult subjects treated with 5-hydroxytryptophan. Am J Clin Nutr 1992; 56: 863–7
Rogers PJ, Blundell JE. Effect of anorexic drugs on food intake and the micro-structure of eating in human subjects. Psychopharmacology 1979; 66: 159–65
Hill AJ, Blundell JE. Sensitivity of the appetite control system in obese subjects to nutritional and serotoninergic challenges. Int J Obesity 1990; 14: 219–33
Wurtman JJ, Wurtman RJ, Growdon JH, et al. Carbohydrate craving in obese people: suppression by treatments affecting serotonergic transmission. Int J Eat Disord 1982; 1: 2–15
Wurtman JJ, Wurtman RJ, Mark S, et al. d-Fenfluramine selectively suppresses carbohydrate snacking in obese subjects. Int J Eat Disord 1985; 4: 89–99
Goodall E, Silverstone T. Differential effect of d-fenfluramine and metergoline on food intake in human subjects. Appetite 1988; 11: 215–88
Blundell JE, Hill AJ. On the mechanism of action of dexfenfluramine: effect on alliesthesia and appetite motivation in lean and obese subjects. Clin Neuropharmacol 1988; 11 Suppl. 1: 121–34S
Goodall EM, Cowen PJ, Franklin M, et al. Ritanserin attenuates anorectic endocrine and thermic responses to d-fenfluramine in human volunteers. Psychopharmacology 1993; 112: 461–6
McGuirk J, Silverstone T. The effect of 5-HT re-uptake inhibitor fluoxetine on food intake and body weight in healthy male subjects. Int J Obesity 1990; 14: 361–72
Lawton CL, Wales JK, Hill AJ, et al. Serotoninergic manipulation, meal-induced satiety and eating patterns: effects of fluoxetine in obese female subjects. Obes Res 1995; 3: 345–56
Wadden TA, Bartlet SJ, Foster GD, et al. Sertraline and relapse prevention following treatment by a very low calorie diet: a controlled clinical trial. Obes Res 1995; 3: 549–57
Walsh AE, Smith KA, Oldman AD. m-Chlorophenylpiperazine decreases food intake in a test meal. Psychopharmacology 1994; 116: 120–2
Sargent PA, Sharpley AL, Williams C, et al. 5-HT2C receptor activation decreases appetite and body weight in obese subjects. Psychopharmacology 1997; 133: 309–12
Boeles S, Williams C, Campling GM, et al. Sumatriptan decreases food intake and increases plasma growth hormone in healthy women. Psychopharmacology 1997; 129 (Pt 2): 179–82
Rolls BJ, Shide DJ, Thorward ML, et al. Sibutramine reduces food intake in non-dieting women with obesity. Obes Res 1998; 6: 1–11
Cangiano C, Laviano A, Del Ben M, et al. Effects of oral 5-hydroxy-tryptophan on energy intake and macronutrient selection in non-insulin dependent diabetic patients. Int J Obesity 1988; 22: 648–54
Foltin RW, Haney M, Comer S, et al. Effect of fenfluramine on food intake, mood, and performance of humans living in a residential laboratory. Physiol Behav 1996a; 59: 295–305
Drent ML, Zelissen PMJ, Kopperchaar HPF, et al. The effect of dexfenfluramine on eating habits in a Dutch ambulatory android overweight population with an overconsumption of snacks. Int J Obesity 1995; 19: 299–304
Pijl H, Koppeschaar HPF, Willekens FLA, et al. Effect of serotonin re-uptake inhibition by fluoxetine on body weight and spontaneous food choice in obesity. Int J Obesity 1991; 15: 237–42
Ward AS, Comer SD, Haney M, et al. Fluoxetine-maintained obese humans: effect on food intake and body weight. Physiol Behav 1999; 66: 815–21
Chapelot D, Mamonier C, Thomas F, et al. Modalities of the food intake-reducing effect of sibutramine in humans. Physiol Behav 2000; 68: 299–308
Hansen DL, Toubro S, Stock MJ, et al. Thermogenic effects of sibutramine in humans. Am J Clin Nutr 1998; 68: 1180–6
Hansen DL, Toubro S, Stock MJ, et al. The effect of sibutramine on energy expenditure and appetite during chronic treatment without dietary restriction. Int J Obesity 1999; 23: 1016–24
Barkeling B, Elfhag K, Rooth P, et al. Short-term effects of sibutramine (Reductil™) on appetite and eating behaviour and the long-term therapeutic outcome. Int J Obesity 2003; 27: 693–700
Cowen PJ, Sargent PA, Williams C, et al. Hypophagic, endocrine and subjective responses to m-chlorophenylpiperazine in healthy men and women. Hum Psychopharmacol 1995; 10: 385–91
Ghaziuddin N, Welch K, Greden J. Central serotonergic effects of m-chlorophenylpiperazine (mCPP) among normal control adolescents. Neuropsychopharmacology 2003; 28: 133–9
Fisler JS, Undernerger SJ, York DA, et al. d-Fenfluramine in a rat model of dietary fat-induced obesity. Pharmacol Biochem Behav 1993; 45: 487–93
Vickers SP, Benwell KR, Porter RH, et al. Comparative effects of continuous infusion of mCPP, Ro 60-0175 and d-fenfluramine on food intake, water intake, body weight and locomotor activity in rats. Br J Pharmacol 2000; 130: 1305–14
Vickers SP, Easton N, Webster LJ, et al. Oral administration of the 5-HT2C receptor agonist, mCPP, reduces body weight gain in rats over 28 days as a result of maintained hypophagia. Psychopharmacology 2003; 167: 274–80
Yen TT, Wong DT, Bemis KG. Reduction of food consumption and body weight of normal and obese mice by chronic treatment with fluoxetine: a serotonin reuptake inhibitor. Drug Dev Res 1987; 10: 37–45
Fuller RW, Wong DT. Fluoxetine: a serotonergic appetite suppressant drug. Drug Dev Res 1989; 17: 1–15
Nielsen JA, Chapin DS, Johson JL, et al. Sertraline, a serotonin-uptake inhibitor, reduces food intake and body weight in lean rats and genetically obese mice. Am J Clin Nutr 1992; 55: 185–8s
Wieczorek I, Schulz C, Jarry H, et al. The effects of the selective serotonin reuptake-inhibitor fluvoxamine on body weight in Zucker rats are mediated by corticotropin-releasing hormone. Int J Obesity 2001; 25: 1566–9
Konkle ATM, Sreter KB, Bajer SL, et al. Chronic paroxetine infusion influences macronutrient selection in male Sprague-Dawley rats. Pharmacol Biochem Behav 2003; 74: 883–90
Kennett GA, Wood MD, Bright F, et al. SB 242084, a selective and brain potent 5-HT2C receptor. Neuropharmacology 1997; 36: 609–20
Hayashi A, Sonoda R, Kimura Y, et al. Antiobesity effect of YM348, a novel 5-HT2C receptor agonist, in Zucker rats. Brain Res 2004; 1011: 221–7
Bjenning C, Williams J, Whelan K, et al. Chronic oral administration of APD356 significantly reduces body weight and fat mass in obesity-prone (DIO) male and female rats. Int J Obesity 2004; 28 (1 Suppl.): 214s
Haddock CK, Poston WSC, Dill PL, et al. Pharmacotherapy for obesity: a quantitative analysis of four decades of published randomized clinical trials. Int J Obesity 2002; 26: 262–73
Pinder RM, Brogden RN, Sawyer PR, et al. Fenfluramine: a review of the pharmacological properties and therapeutic efficacy in obesity. Drugs 1975; 10: 241–323
Guy-Grand B, Apfelbaum M, Creoaldi C, et al. International trial of long-term dexfenfluramine in obesity. Lancet 1989; Nov 11: 1142–5
Guy-Grand B. Clinical studies with d-fenfluramine. Am J Clin Nutr 1992; 55: 173–6s
Finer N, Finer S, Naoumova RP. Drug therapy after very-low-calorie-diets. Am J Clin Nutr 1992; 56: 195–8s
James WPT, Astrup A, Finer N, et al. Effect of sibutramine on weight maintenance after weight loss: a randomised trial. Lancet 2000; 356: 2119–25
McMahon FG, Fujioka K, Singh BN, et al. Efficacy and safety of sibutramine in obese white and African American patients with hypertension: a 1-year, double-blind, placebo-controlled, multicenter trial. Arch Intern Med 2000; 160: 2185–91
Smith IG, Goulder MA. Randomized placebo-controlled trial of long-term treatment with sibutramine in mild to moderate obesity. J Fam Pract 2001; 50: 505–12
McNulty SJ, Ur E, Williams G. A randomized trial of sibutramine in the management of obese type 2 diabetic patients treated with metformin. Diabetes Care 2003; 26: 125–33
Poston WSC, Reeves RS, Haddock CK, et al. Weight loss in obese Mexican Americans treated for 1-year with orlistat and lifestyle modification. Int J Obesity 2003; 27: 1486–93
Arterburn DE, Crane PK, Veenstra DL. The efficacy and safety of sibutramine for weight loss: a systematic review. Arch Intern Med 2004; 164: 994–1003
Padwal R, Li SK, Lau DCW. Long-term pharmacotherapy for overweight and obesity: a systematic review and meta-analysis of randomized controlled trials. Int J Obesity 2003; 27: 1437–46
Wise SD. Clinical studies with fluoxetine in obesity. Am J Clin Nutr 1992; 55: 181–4s
Goldstein DJ, Rampey AH, Roback PJ, et al. Efficacy and safety of long-term fluoxetine treatment of obesity-maximising success. Obes Res 1995; 3 Suppl. 4: 481–90s
Darga LL, Carroll-Michals C, Botsford SJ, et al. Fluoxetine’s effect on weight loss in obese subjects. Am J Clin Nutr 1991; 54: 315–21
Goldstein DJ, Rampey AH, Enas GG, et al. Fluoxetine: a randomized clinical trial in the treatment of obesity. Int J Obesity 1994; 18: 129–35
Simpson RJ, Lawton DJ, Watt MH, et al. Effect of zimelidine, a new antidepressant, on appetite and body weight. Br J Clin Pharmacol 1981; 11: 96–8
Van Baak M, Lentjes M, Mujakovic S, et al. Behavior modification and societal change in the prevention of obesity. Obes Res 2003; 11 (1 Suppl.): A111
Halford JCG. Serotonin (5-HT) drugs: effects on appetite expression and use for the treatment of obesity. Curr Drug Targets 2004; 5: 637–46
Abeniam L, Moride Y, Brenot F, et al. Appetite suppressant drugs and the risk of primary pulmonary hypertension. N Engl J Med 1996; 335: 609–16
Greenway FL, Caruso MK. Safety of obesity drugs. Expert Opin Drug Saf. In press
Bays HE, Dujovene CA. Anti-obesity drug development. Expert Opin Invest Drugs 2002; 11: 1189–204
Bays HE. Current and investigational antiobesity agents and obesity therapeutic treatment targets. Obes Res 2004; 12: 1197–211
Smith BM, Smith JM, Tsai JH, et al. Discovery and SAR of new benzazapines and potent and selective 5-HT2C receptor agonist for the treatment of obesity. Bioorgan Med Chem Lett 2005; 12: 1467–70
Smith S, Anderson J, Frank A, et al. The effects of APD356, a selective 5-HT2C agonist, on weight loss in a 4 week study in healthy obese patients [Abstract]. Obes Res 2005; 13 Suppl.: 101–R
Halford JCG, Cooper GD, Dovey TM, et al. Pharmacological approaches to obesity treatment; current medical chemistry. CNS Agents 2003; 3: 283–310
Van Gaal LF, Rissanen AM, Scheen AJ, et al. Effects of the cannabinoid-1 receptor blocker rimonabant on weight reduction and cardiovascular risk factors in overweight patients: 1-year experience from the RIO-Europe study. Lancet 2005; 365: 1389–97
Woolley ML, Marsden CA, Fone KC. 5-HT6 receptors. Current drug targets: CNS Neurol Disord 2004; 3: 59–79
Vickers SP, Dourish CT. Serotonin receptor ligands and the treatment of obesity. Curr Opin Invest Drugs 2004; 5: 377–88
Shacham S, Marantz Y, Senderowitz H, et al. Novel 5-HT6 receptor antagonists for the treatment of obesity. Obes Res 2005; 13: A192
EPIX Pharmaceuticals. EPIX Pharmaceuticals announces findings from obesity and cognitive impairment studies at Society for Neuroscience Meeting [online]. Available from URL: http://investor.epixpharma.com/phoenix.zhtml?c=91717&p=irol-newsArticle&ID=917339&highlight [Accessed 2006 Nov13]
Biovitrum’s project portfolio within obesity advances [online]. Available from URL: http://www.stockholmbioregion.com/templates/page___517.aspx [Accessed 2006 Nov 13]
Halford JCG. Obesity drugs in clinical development. Curr Opin Invest Drugs 2006; 7: 312–8
Acknowledgements
The authors would like to thank Miss Lisa D.M. Richards for her help in preparing this manuscript and Dr Steve Vickers (RenaSci Consultancy Ltd) for providing much useful material for inclusion within this review. The authors would like in particular to thank Lora Heisler (University of Cambridge), Joel Elmquist (Harvard Medical School) and Michael Cowley (Oregon Health Sciences University) for providing updates on their most recent research and allowing us to reproduce their figure. The website for the Kissileff Laboratory is http://www.liv.ac.uk/Psychology/kissilefflab/Home.html.
The laboratory would like to thank corporate donors GlaxoSmithKline, NJ, USA, for providing funds for postgraduate training. Drs Harrold and Halford have received research funding from Predix Pharmaceuticals. Professor Blundell and Dr Halford have received research funding from Sanofi-Aventis.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Halford, J.C.G., Harrold, J.A., Boyland, E.J. et al. Serotonergic Drugs. Drugs 67, 27–56 (2007). https://doi.org/10.2165/00003495-200767010-00004
Published:
Issue Date:
DOI: https://doi.org/10.2165/00003495-200767010-00004