Jump to content

Gliese 514

Coordinates: Sky map 13h 29m 59.7859s, +10° 22′ 37.7845″
From Wikipedia, the free encyclopedia
Gliese 514
Observation data
Epoch J2000      Equinox J2000
Constellation Virgo[1]
Right ascension 13h 29m 59.78590s[2]
Declination +10° 22′ 37.7845″[2]
Apparent magnitude (V) 9.029[3]
Characteristics
Evolutionary stage main-sequence star
Spectral type M0Ve[4]
Apparent magnitude (J) 5.902±0.018[5]
Apparent magnitude (H) 5.300±0.033[5]
Astrometry
Radial velocity (Rv)14.12±0.12[2] km/s
Proper motion (μ) RA: 1,127.341 mas/yr[2]
Dec.: −1,073.888 mas/yr[2]
Parallax (π)131.1013±0.0270 mas[2]
Distance24.878 ± 0.005 ly
(7.628 ± 0.002 pc)
Absolute magnitude (MV)+9.63[1]
Details
Mass0.562[5] M
Radius0.611±0.043[6] R
Luminosity (bolometric)0.043[6] L
Surface gravity (log g)4.78[5] cgs
Temperature2,901[7] - 3,727[5] K
Metallicity [Fe/H]−0.07±0.07[5] dex
Rotation28.0±2.9[8] days
Rotational velocity (v sin i)2.00[9] km/s
Age8.25[10] Gyr
Other designations
BD+11 2576, HIP 65859, LTT 13925, Ross 490, TYC 895-317-1, 2MASS J13295979+1022376, Gaia EDR3 3738099879558957952[3]
Database references
SIMBADdata
Exoplanet Archivedata

Gliese 514, also known as BD+11 2576 or HIP 65859, is an M-type main-sequence star, in the constellation Virgo 24.88 light-years away from the Solar System.

Gliese 514's metallicity Fe/H index is largely unknown, with median values from -0.4 to +0.18 reported in the literature. This discrepancy is due to peculiarities of the stellar spectrum of Gliese 514.[citation needed] The spectrum peculiarities also affect the accuracy of the star's temperature measurement,[9] with reported values as low as 2901 K.[7] The spectrum of Gliese 514 shows emission lines,[4] but the star itself has a low starspot activity.[11]

Multiplicity surveys did not detect any stellar companions as of 2020.[12]

The Sun is currently calculated to be passing through the tidal tail of Gliese 514's Oort cloud. Thus, future interstellar objects passing through the Solar System may originate from Gliese 514.[13]

Planetary system

[edit]

The existence of a planet on a 15-day orbit around Gliese 514 was first suspected in 2019.[14] However, that planet was not confirmed. Instead, in 2022, one Super-Earth planet, named Gliese 514 b, was discovered on an eccentric 140-day orbit by the radial velocity method. The planetary orbit partially lies within the habitable zone of the parent star with planetary equilibrium temperature, averaged along orbit, equal to 202±11 K.[8]

The infrared excess of the star also indicates the possible presence of a debris disk in the system, albeit at a low signal to noise ratio.[15]

The Gliese 514 planetary system[8]
Companion
(in order from star)
Mass Semimajor axis
(AU)
Orbital period
(days)
Eccentricity Inclination Radius
b >5.2±0.9 M🜨 0.422+0.014
−0.015
140.43±0.41 0.45+0.15
−0.14

References

[edit]
  1. ^ a b Anderson, E.; Francis, Ch. (2012), "XHIP: An extended hipparcos compilation", Astronomy Letters, 38 (5): 331, arXiv:1108.4971, Bibcode:2012AstL...38..331A, doi:10.1134/S1063773712050015 XHIP record for this object at VizieR.
  2. ^ a b c d e Vallenari, A.; et al. (Gaia collaboration) (2023). "Gaia Data Release 3. Summary of the content and survey properties". Astronomy and Astrophysics. 674: A1. arXiv:2208.00211. Bibcode:2023A&A...674A...1G. doi:10.1051/0004-6361/202243940. S2CID 244398875. Gaia DR3 record for this source at VizieR.
  3. ^ a b "BD+11 2576", SIMBAD, Centre de données astronomiques de Strasbourg, retrieved 2022-04-17
  4. ^ a b Lindegren, Lennart; Dravins, Dainis (2021), "Astrometric radial velocities for nearby stars", Astronomy & Astrophysics, 652: A45, arXiv:2105.09014, Bibcode:2021A&A...652A..45L, doi:10.1051/0004-6361/202141344, S2CID 234778154
  5. ^ a b c d e f Lindgren, Sara; Heiter, Ulrike (2017), "Metallicity determination of M dwarfs", Astronomy & Astrophysics, 604: A97, arXiv:1705.08785, Bibcode:2017A&A...604A..97L, doi:10.1051/0004-6361/201730715, S2CID 119216828
  6. ^ a b Berger, D. H.; Gies, D. R.; McAlister, H. A.; Brummelaar, T. A. ten; Henry, T. J.; Sturmann, J.; Sturmann, L.; Turner, N. H.; Ridgway, S. T.; Aufdenberg, J. P.; Merand, A. (2006), "First Results from the CHARA Array. IV. The Interferometric Radii of Low-Mass Stars", The Astrophysical Journal, 644 (1): 475–483, arXiv:astro-ph/0602105, Bibcode:2006ApJ...644..475B, doi:10.1086/503318, S2CID 14966363
  7. ^ a b Ghosh, Samrat; Ghosh, Supriyo; Das, Ramkrishna; Mondal, Soumen; Khata, Dhrimadri (2020), "Understanding the physical properties of young M dwarfs: NIR spectroscopic studies", Monthly Notices of the Royal Astronomical Society, 493 (3): 4533–4550, arXiv:2002.05762, Bibcode:2020MNRAS.493.4533K, doi:10.1093/mnras/staa427
  8. ^ a b c Damasso, M.; et al. (2022), "A quarter century of spectroscopic monitoring of the nearby M dwarf Gl 514", Astronomy & Astrophysics, 666: A187, arXiv:2204.06376, doi:10.1051/0004-6361/202243522, S2CID 248157318
  9. ^ a b Olander, T.; Heiter, U.; Kochukhov, O. (2021), "Comparative high-resolution spectroscopy of M dwarfs: Exploring non-LTE effects", Astronomy & Astrophysics, 649: A103, arXiv:2102.08836, Bibcode:2021A&A...649A.103O, doi:10.1051/0004-6361/202039747, S2CID 231942628
  10. ^ Maldonado, J.; Micela, G.; Baratella, M.; d'Orazi, V.; Affer, L.; Biazzo, K.; Lanza, A. F.; Maggio, A.; González Hernández, J. I.; Perger, M.; Pinamonti, M.; Scandariato, G.; Sozzetti, A.; Locci, D.; Di Maio, C.; Bignamini, A.; Claudi, R.; Molinari, E.; Rebolo, R.; Ribas, I.; Toledo-Padrón, B.; Covino, E.; Desidera, S.; Herrero, E.; Morales, J. C.; Suárez-Mascareño, A.; Pagano, I.; Petralia, A.; Piotto, G.; Poretti, E. (2020), "HADES RV programme with HARPS-N at TNG. XII. The abundance signature of M dwarf stars with planets", Astronomy and Astrophysics, 644: A68, arXiv:2010.14867, Bibcode:2020A&A...644A..68M, doi:10.1051/0004-6361/202039478, S2CID 225094682
  11. ^ Reiners, A. (2007), "The narrowest M-dwarf line profiles and the rotation-activity connection at very slow rotation", Astronomy and Astrophysics, 467 (1): 259, arXiv:astro-ph/0702634, Bibcode:2007A&A...467..259R, doi:10.1051/0004-6361:20066991, S2CID 8672566
  12. ^ Lamman, Claire; Baranec, Christoph; Berta-Thompson, Zachory K.; Law, Nicholas M.; Schonhut-Stasik, Jessica; Ziegler, Carl; Salama, Maïssa; Jensen-Clem, Rebecca; Duev, Dmitry A.; Riddle, Reed; Kulkarni, Shrinivas R.; Winters, Jennifer G.; Irwin, Jonathan M. (2020), "Robo-AO M-dwarf Multiplicity Survey: Catalog", The Astronomical Journal, 159 (4): 139, arXiv:2001.05988, Bibcode:2020AJ....159..139L, doi:10.3847/1538-3881/ab6ef1, S2CID 210718832
  13. ^ Portegies Zwart, S. (2021), "Oort cloud Ecology", Astronomy & Astrophysics, 647: A136, arXiv:2011.08257, doi:10.1051/0004-6361/202038888, S2CID 226976082
  14. ^ Barnes, J. R.; et al. (2019-06-11). "Frequency of planets orbiting M dwarfs in the Solar neighbourhood". arXiv:1906.04644 [astro-ph.EP].
  15. ^ Tanner, Angelle; Plavchan, Peter; Bryden, Geoff; Kennedy, Grant; Matrá, Luca; Cronin-Coltsmann, Patrick; Lowrance, Patrick; Henry, Todd; Riaz, Basmah; Gizis, John E.; Riedel, Adric; Choquet, Elodie (2020), "Herschel Observations of Disks around Late-type Stars", Publications of the Astronomical Society of the Pacific, 132 (1014): 084401, arXiv:2004.12597, Bibcode:2020PASP..132h4401T, doi:10.1088/1538-3873/ab895f, S2CID 216553868