Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective
- PMID: 32123898
- PMCID: PMC7449554
- DOI: 10.1093/cvr/cvaa025
Loss of life expectancy from air pollution compared to other risk factors: a worldwide perspective
Erratum in
-
Corrigendum.Cardiovasc Res. 2020 Jun 1;116(7):1334. doi: 10.1093/cvr/cvaa073. Cardiovasc Res. 2020. PMID: 32270863 Free PMC article. No abstract available.
Abstract
Aims: Long-term exposure of humans to air pollution enhances the risk of cardiovascular and respiratory diseases. A novel Global Exposure Mortality Model (GEMM) has been derived from many cohort studies, providing much-improved coverage of the exposure to fine particulate matter (PM2.5). We applied the GEMM to assess excess mortality attributable to ambient air pollution on a global scale and compare to other risk factors.
Methods and results: We used a data-informed atmospheric model to calculate worldwide exposure to PM2.5 and ozone pollution, which was combined with the GEMM to estimate disease-specific excess mortality and loss of life expectancy (LLE) in 2015. Using this model, we investigated the effects of different pollution sources, distinguishing between natural (wildfires, aeolian dust) and anthropogenic emissions, including fossil fuel use. Global excess mortality from all ambient air pollution is estimated at 8.8 (7.11-10.41) million/year, with an LLE of 2.9 (2.3-3.5) years, being a factor of two higher than earlier estimates, and exceeding that of tobacco smoking. The global mean mortality rate of about 120 per 100 000 people/year is much exceeded in East Asia (196 per 100 000/year) and Europe (133 per 100 000/year). Without fossil fuel emissions, the global mean life expectancy would increase by 1.1 (0.9-1.2) years and 1.7 (1.4-2.0) years by removing all potentially controllable anthropogenic emissions. Because aeolian dust and wildfire emission control is impracticable, significant LLE is unavoidable.
Conclusion: Ambient air pollution is one of the main global health risks, causing significant excess mortality and LLE, especially through cardiovascular diseases. It causes an LLE that rivals that of tobacco smoking. The global mean LLE from air pollution strongly exceeds that by violence (all forms together), i.e. by an order of magnitude (LLE being 2.9 and 0.3 years, respectively).
Keywords: Air pollution; Anthropogenic emissions; Fine particulate matter; Fossil fuel emissions; Loss of life expectancy; Natural emissions; Public health risks.
© The Author(s) 2020. Published by Oxford University Press on behalf of the European Society of Cardiology.
Figures





Comment in
-
Air pollution health impacts: the knowns and unknowns for reliable global burden calculations.Cardiovasc Res. 2020 Sep 1;116(11):1794-1796. doi: 10.1093/cvr/cvaa092. Cardiovasc Res. 2020. PMID: 32267925 Free PMC article. No abstract available.
-
Estimates of burden from air pollution may be severely biased: a methodological request.Cardiovasc Res. 2020 Jul 1;116(8):e101. doi: 10.1093/cvr/cvaa129. Cardiovasc Res. 2020. PMID: 32379865 No abstract available.
-
We all breathe the same air … and we are all mortal.Cardiovasc Res. 2020 Sep 1;116(11):1797-1799. doi: 10.1093/cvr/cvaa126. Cardiovasc Res. 2020. PMID: 32421767 Free PMC article. No abstract available.
-
Inappropriate evaluation of methodology and biases by P. Morfeld and T.C. Erren.Cardiovasc Res. 2020 Jul 1;116(8):e102. doi: 10.1093/cvr/cvaa130. Cardiovasc Res. 2020. PMID: 32582929 No abstract available.
Similar articles
-
Impact of the 1990 Hong Kong legislation for restriction on sulfur content in fuel.Res Rep Health Eff Inst. 2012 Aug;(170):5-91. Res Rep Health Eff Inst. 2012. PMID: 23316618
-
Multicity study of air pollution and mortality in Latin America (the ESCALA study).Res Rep Health Eff Inst. 2012 Oct;(171):5-86. Res Rep Health Eff Inst. 2012. PMID: 23311234
-
Effects of long-term exposure to traffic-related air pollution on respiratory and cardiovascular mortality in the Netherlands: the NLCS-AIR study.Res Rep Health Eff Inst. 2009 Mar;(139):5-71; discussion 73-89. Res Rep Health Eff Inst. 2009. PMID: 19554969
-
Cumulative Lifetime Burden of Cardiovascular Disease From Early Exposure to Air Pollution.J Am Heart Assoc. 2020 Mar 17;9(6):e014944. doi: 10.1161/JAHA.119.014944. Epub 2020 Mar 15. J Am Heart Assoc. 2020. PMID: 32174249 Free PMC article. Review.
-
[Breathing: Ambient Air Pollution and Health - Part II].Pneumologie. 2019 Jun;73(6):347-373. doi: 10.1055/a-0895-6494. Epub 2019 Jun 11. Pneumologie. 2019. PMID: 31185518 Review. German.
Cited by
-
Factors of acute respiratory infection among under-five children across sub-Saharan African countries using machine learning approaches.Sci Rep. 2024 Jul 9;14(1):15801. doi: 10.1038/s41598-024-65620-1. Sci Rep. 2024. PMID: 38982206 Free PMC article.
-
Physicochemical and microbiological characteristics of urban aerosols in Krakow (Poland) and their potential health impact.Environ Geochem Health. 2021 Nov;43(11):4601-4626. doi: 10.1007/s10653-021-00950-x. Epub 2021 Apr 29. Environ Geochem Health. 2021. PMID: 33913083 Free PMC article.
-
Climate change and human health in the Eastern Mediterranean and Middle East: Literature review, research priorities and policy suggestions.Environ Res. 2023 Jan 1;216(Pt 2):114537. doi: 10.1016/j.envres.2022.114537. Epub 2022 Oct 21. Environ Res. 2023. PMID: 36273599 Free PMC article. Review.
-
Increasing life expectancy in China by achieving its 2025 air quality target.Environ Sci Ecotechnol. 2022 Aug 4;12:100203. doi: 10.1016/j.ese.2022.100203. eCollection 2022 Oct. Environ Sci Ecotechnol. 2022. PMID: 36157339 Free PMC article.
-
Air pollution and cardiovascular disease: Can the Australian bushfires and global COVID-19 pandemic of 2020 convince us to change our ways?Bioessays. 2021 Sep;43(9):e2100046. doi: 10.1002/bies.202100046. Epub 2021 Jun 9. Bioessays. 2021. PMID: 34106476 Free PMC article. Review.
References
-
- Lim SS, Vos T, Flaxman AD, Danaei G, Shibuya K, Adair-Rohani H, Amann M, Anderson HR, Andrews KG, Aryee M, Atkinson C, Bacchus LJ, Bahalim AN, Balakrishnan K, Balmes J, Barker-Collo S, Baxter A, Bell ML, Blore JD, Blyth F, Bonner C, Borges G, Bourne R, Boussinesq M, Brauer M, Brooks P, Bruce NG, Brunekreef B, Bryan-Hancock C, Bucello C, Buchbinder R, Bull F, Burnett RT, Byers TE, Calabria B, Carapetis J, Carnahan E, Chafe Z, Charlson F, Chen H, Chen JS, Cheng AT, Child JC, Cohen A, Colson KE, Cowie BC, Darby S, Darling S, Davis A, Degenhardt L, Dentener F, Des Jarlais DC, Devries K, Dherani M, Ding EL, Dorsey ER, Driscoll T, Edmond K, Ali SE, Engell RE, Erwin PJ, Fahimi S, Falder G, Farzadfar F, Ferrari A, Finucane MM, Flaxman S, Fowkes FG, Freedman G, Freeman MK, Gakidou E, Ghosh S, Giovannucci E, Gmel G, Graham K, Grainger R, Grant B, Gunnell D, Gutierrez HR, Hall W, Hoek HW, Hogan A, Hosgood HD 3rd, Hoy D, Hu H, Hubbell BJ, Hutchings SJ, Ibeanusi SE, Jacklyn GL, Jasrasaria R, Jonas JB, Kan H, Kanis JA, Kassebaum N, Kawakami N, Khang YH, Khatibzadeh S, Khoo JP, Kok C, Laden F, Lalloo R, Lan Q, Lathlean T, Leasher JL, Leigh J, Li Y, Lin JK, Lipshultz SE, London S, Lozano R, Lu Y, Mak J, Malekzadeh R, Mallinger L, Marcenes W, March L, Marks R, Martin R, McGale P, McGrath J, Mehta S, Mensah GA, Merriman TR, Micha R, Michaud C, Mishra V, Mohd Hanafiah K, Mokdad AA, Morawska L, Mozaffarian D, Murphy T, Naghavi M, Neal B, Nelson PK, Nolla JM, Norman R, Olives C, Omer SB, Orchard J, Osborne R, Ostro B, Page A, Pandey KD, Parry CD, Passmore E, Patra J, Pearce N, Pelizzari PM, Petzold M, Phillips MR, Pope D, Pope CA III, Powles J, Rao M, Razavi H, Rehfuess EA, Rehm JT, Ritz B, Rivara FP, Roberts T, Robinson C, Rodriguez-Portales JA, Romieu I, Room R, Rosenfeld LC, Roy A, Rushton L, Salomon JA, Sampson U, Sanchez-Riera L, Sanman E, Sapkota A, Seedat S, Shi P, Shield K, Shivakoti R, Singh GM, Sleet DA, Smith E, Smith KR, Stapelberg NJ, Steenland K, Stöckl H, Stovner LJ, Straif K, Straney L, Thurston GD, Tran JH, Van Dingenen R, van Donkelaar A, Veerman JL, Vijayakumar L, Weintraub R, Weissman MM, White RA, Whiteford H, Wiersma ST, Wilkinson JD, Williams HC, Williams W, Wilson N, Woolf AD, Yip P, Zielinski JM, Lopez AD, Murray CJ, Ezzati M, AlMazroa MA, Memish ZA. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 2012;380:2225–2260. - PMC - PubMed
-
- GBD 2015 Risk Factors Collaborators. Global, regional, and national comparative risk assessment of 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks, 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015. Lancet 2016;388:1659–1724. - PMC - PubMed
-
- Cohen AJ, Brauer M, Burnett R, Anderson HR, Frostad J, Estep K, Balakrishnan K, Brunekreef B, Dandona L, Dandona R, Feigin V, Freedman G, Hubbell B, Jobling A, Kan H, Knibbs L, Liu Y, Martin R, Morawska L, Pope CA III, Shin H, Straif K, Shaddick G, Thomas M, van Dingenen R, van Donkelaar A, Vos T, Murray CJL, Forouzanfar MH.. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: an analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017;389:1907–1918. - PMC - PubMed
-
- World Health Organization. Global Health Observatory. http://www.who.int/gho/en/ (9 January2020, date last accessed).
-
- Landrigan PJ, Fuller R, Acosta NJR, Adeyi O, Arnold R, Basu N(N), Baldé AB, Bertollini R, Bose-O'Reilly S, Boufford JI, Breysse PN, Chiles T, Mahidol C, Coll-Seck AM, Cropper ML, Fobil J, Fuster V, Greenstone M, Haines A, Hanrahan D, Hunter D, Khare M, Krupnick A, Lanphear B, Lohani B, Martin K, Mathiasen KV, McTeer MA, Murray CJL, Ndahimananjara JD, Perera F, Potočnik J, Preker AS, Ramesh J, Rockström J, Salinas C, Samson LD, Sandilya K, Sly PD, Smith KR, Steiner A, Stewart RB, Suk WA, van Schayck OCP, Yadama GN, Yumkella K, Zhong M.. The Lancet Commission on pollution and health. Lancet 2018;391:462–512. - PubMed
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources
Medical