Skip to content

ShuaibinLi/ESBox

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

9 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

English | 简体中文

ESBox is an efficient tool for black-box optimization with multiple evolutionary strategy algorithms.

ESBox Capabilities in a Glance

Build-in Problems Algorithms User APIS
  • Function problems
    • Ackley
    • Griewank
    • Rastrigin
    • Rosenbrock
    • StyblinskiTang
    • Zakharov
  • RL problems
    • Mujoco
      • HalfCheetah-v2
      • Humanoid-v2
  • OpenAI-ES paper
    • Gaussian sampler (Mirror)
    • OpenAIES learner
  • ARS paper
    • Gaussian sampler (Mirror)
    • ARS learner
  • NSRAES paper
    • Gaussian sampler (Mirror)
    • NSRAES learner
  • CMA-ES paper
    • CMA sampler
    • CMAES learner
  • Sep-CMA-ES paper
    • Sep-CMA sampler
    • Sep-CMAES learner
  • Config
  • Objects
    • Model (torch, paddlepaddle)
    • List (float)
  • Examples
    • Local training
      • Function (List, Model)
    • Distributed training
      • RL problem: HalfCheetah-v2 (Model)
  • QuickStart
    • RL problem: Cartpole-v1 (optimization Model)
      • local training
      • distributed training
    • Function problem: Quadratic function (optimization float List)
      • local training
      • distributed training

    How to use

    Install

    git clone https://github.com/ShuaibinLi/ESBox.git
    cd ESBox
    pip install . 
    

    Other Dependencies

    • parl
    • pytorch or paddlepaddle
    • gym==0.18.0
    • mujoco-py==2.1.2.14
      Note: To use mujoco-v2 env in gym0.18.0, please download the mujoco210 binaries for Linux and extract the downloaded mujoco210 directory into ~/.mujoco/mujoco210.

    Start training

    • Two training methods: local training and distributed training
    • Two forms of optimization: Model optimization (CartPole-v1 as an example) and float List optimization (2-dimensional 2nd degree function as an example)
    • Examples of five algorithms that solve two categories of problems
    • The results of the benchmark reproduction

    About

    No description, website, or topics provided.

    Resources

    Stars

    Watchers

    Forks

    Releases

    No releases published

    Packages

    No packages published