Alemi A, Fischer I, Dillon J, Murphy K (2017) Deep variational information bottleneck. In: Proceedings of the international conference on learning representations, Toulon, France
Google Scholar
Alemi A, Poole B, Fischer I, Dillon J, Saurous RA, Murphy K (2018) Fixing a broken ELBO. In: Dy J, Krause A (eds) Proceedings of the international conference on machine learning, Stockholm, Sweden, vol 80, pp 159–168
Google Scholar
Beal MJ, Ghahramani Z (2003) The variational Bayesian EM algorithm for incomplete data: with application to scoring graphical model structures. In: Bayesian Statistics 7: the Seventh Valencia International Meeting, Tenerife, Spain pp. 453–464
Google Scholar
Blundell C, Cornebise J, Kavukcuoglu K, Wierstra D (2015) Weight uncertainty in neural networks. In: Proceedings of the international conference on machine learning, Lille, France, vol 37, pp 1613–1622
Google Scholar
Breiman L (2001) Random forests. Machine Learning 45(1):5–32. https://doi.org/10.1023/A:1010933404324
Article
MATH
Google Scholar
Burda Y, Grosse R, Salakhutdinov R (2016) Importance weighted autoencoders. In: Proceedings of the international conference on learning representations, San Juan, Puerto Rico
Google Scholar
Burgess CP, Higgins I, Pal A, Matthey L, Watters N, Desjardins G, Lerchner A (2018) Understanding disentangling in β-VAE. arXiv e-prints 1804.03599
Google Scholar
Chen J, Chen J, Chao H, Yang M (2018) Image blind denoising with generative adversarial network based noise modeling. In: Proceedings of the conference on computer vision and pattern recognition, Salt Lake City, USA
Google Scholar
Dinh L, Sohl-Dickstein J, Bengio S (2017) Density estimation using real NVP. In: Proceedings of the international conference on learning representations, Toulon, France
Google Scholar
Eslami SMA, Heess N, Weber T, Tassa Y, Szepesvari D, kavukcuoglu k, Hinton GE (2016) Attend, infer, repeat: Fast scene understanding with generative models. In: Advances in neural information processing systems, pp 3225–3233
Google Scholar
Eslami SMA, Jimenez Rezende D, Besse F, Viola F, Morcos AS, Garnelo M, Ruderman A, Rusu AA, Danihelka I, Gregor K, Reichert DP, Buesing L, Weber T, Vinyals O, Rosenbaum D, Rabinowitz N, King H, Hillier C, Botvinick M, Wierstra D, Kavukcuoglu K, Hassabis D (2018) Neural scene representation and rendering. Science 360(6394):1204–1210
Article
Google Scholar
Goodfellow I, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville A, Bengio Y (2014) Generative adversarial nets. In: Advances in neural information processing systems, Montreal, Canada, pp 2672–2680
Google Scholar
Gómez-Bombarelli R, Wei JN, Duvenaud D, Hernández-Lobato JM, Sánchez-Lengeling B, Sheberla D, Aguilera-Iparraguirre J, Hirzel TD, Adams RP, Aspuru-Guzik A (2018) Automatic chemical design using a data-driven continuous representation of molecules. ACS Central Sci 4(2):268–276
Article
Google Scholar
Ha D, Schmidhuber J (2018) Recurrent world models facilitate policy evolution. In: Advances in neural information processing systems, Montreal, Canada, pp 2450–2462
Google Scholar
He J, Spokoyny D, Neubig G, Berg-Kirkpatrick T (2019) Lagging inference networks and posterior collapse in variational autoencoders. In: Proceedings of the international conference on learning representations, New Orleans, USA
Google Scholar
Heusel M, Ramsauer H, Unterthiner T, Nessler B, Hochreiter S (2017) GANs trained by a two time-scale update rule converge to a local Nash equilibrium. In: Advances in neural information processing systems, Long Beach, USA, pp 6626–6637
Google Scholar
Higgins I, Matthey L, Pal A, Burgess C, Glorot X, Botvinick M, Mohamed S, Lerchner A (2017) β-VAE: Learning basic visual concepts with a constrained variational framework. In: Proceedings of the international conference on learning representations, Toulon, France
Google Scholar
Houthooft R, Chen X, Chen X, Duan Y, Schulman J, De Turck F, Abbeel P (2016) VIME: Variational information maximizing exploration. In: Advances in neural information processing systems, Barcelona, Spain, pp 1109–1117
Google Scholar
Jang E, Gu S, Poole B (2017) Categorical reparameterization with Gumbel-softmax. In: Proceedings of the international conference on learning representations, Toulon, France
Google Scholar
Kalchbrenner N, van den Oord A, Simonyan K, Danihelka I, Vinyals O, Graves A, Kavukcuoglu K (2017) Video pixel networks. In: Proceedings of the international conference on machine learning, Sydney, NSW, Australia, vol 70, pp 1771–1779
Google Scholar
Kingma DP, Ba J (2015) Adam: A method for stochastic optimization. In: Proceedings of the international conference on learning representations, San Diego, USA
Google Scholar
Kingma DP, Dhariwal P (2018) Glow: Generative flow with invertible 1x1 convolutions. In: Advances in neural information processing systems, Montreal, Canada, pp 10215–10224
Google Scholar
Kingma DP, Welling M (2014) Auto-encoding variational Bayes. In: Proceedings of the international conference on learning representations, Banff, Canada
Google Scholar
Kingma DP, Welling M (2019) An introduction to variational autoencoders. Found Trends Mach Learn 12(4):307–392. https://doi.org/10.1561/2200000056
Article
MATH
Google Scholar
Kingma DP, Mohamed S, Jimenez Rezende D, Welling M (2014) Semi-supervised learning with deep generative models. In: Advances in neural information processing systems, Montreal, Canada, pp 3581–3589
Google Scholar
Kingma DP, Salimans T, Jozefowicz R, Chen X, Sutskever I, Welling M (2016) Improved variational inference with inverse autoregressive flow. In: Advances in neural information processing systems, Barcelona, Spain, pp 4743–4751
Google Scholar
Lecun Y, Bottou L, Bengio Y, Haffner P (1998) Gradient-based learning applied to document recognition. Proc IEEE 86(11):2278–2324
Article
Google Scholar
Ledig C, Theis L, Huszar F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the conference on computer vision and pattern recognition, Honolulu, USA
Google Scholar
Lee AX, Zhang R, Ebert F, Abbeel P, Finn C, Levine S (2018) Stochastic adversarial video prediction. arXiv e-prints 1804.01523
Google Scholar
Maaløe L, Sønderby CK, Sønderby SK, Winther O (2016) Auxiliary deep generative models. In: Proceedings of the international conference on machine learning, New York, USA, vol 48, pp 1445–1453
Google Scholar
Maaten Lvd, Hinton G (2008) Visualizing data using t-SNE. J Mach Learn Res 9:2579–2605
MATH
Google Scholar
Maddison CJ, Tarlow D, Minka T (2014) A∗ sampling. In: Advances in neural information processing systems, Montreal, Canada, pp 3086–3094
Google Scholar
Maddison C, Mnih A, Teh YW (2017) The concrete distribution: a continuous relaxation of discrete random variables. In: Proceedings of the international conference on learning representations, Toulon, France
Google Scholar
McInnes L, Healy J, Melville J (2018) UMAP: Uniform manifold approximation and projection for dimension reduction. arXiv e-prints 1802.03426
Google Scholar
Migon HS, Gamerman D, Louzada F (2014) Statistical inference: An integrated approach. CRC press, Boca Raton, USA
Book
MATH
Google Scholar
Mnih A, Gregor K (2014) Neural variational inference and learning in belief networks. In: Proceedings of the international conference on machine learning, Bejing, China, vol 32, pp 1791–1799
Google Scholar
Mnih A, Rezende D (2016) Variational inference for Monte Carlo objectives. In: Proceedings of the international conference on machine learning, New York, USA, vol 48, pp 2188–2196
Google Scholar
Nair V, Hinton GE (2010) Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the international conference on machine learning, Haifa, Israel, pp 807–814
Google Scholar
Nowozin S (2018) Debiasing evidence approximations: On importance-weighted autoencoders and jackknife variational inference. In: Proceedings of the international conference on learning representations, Vancouver, Canada
Google Scholar
Papamakarios G, Pavlakou T, Murray I (2017) Masked autoregressive flow for density estimation. In: Advances in neural information processing systems, Long Beach, USA, pp 2338–2347
Google Scholar
Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, Desmaison A, Kopf A, Yang E, DeVito Z, Raison M, Tejani A, Chilamkurthy S, Steiner B, Fang L, Bai J, Chintala S (2019) PyTorch: An imperative style, high-performance deep learning library. In: Advances in neural information processing systems, Vancouver, Canada, pp 8024–8035
Google Scholar
Rainforth T, Kosiorek A, Le TA, Maddison C, Igl M, Wood F, Teh YW (2018) Tighter variational bounds are not necessarily better. In: Proceedings of the international conference on machine learning, Stockholm, Sweden, vol 80, pp 4277–4285
Google Scholar
Ranganath R, Tran D, Blei D (2016) Hierarchical variational models. In: Proceedings of the international conference on machine learning, New York, USA, vol 48, pp 324–333
Google Scholar
Regier J, Miller A, McAuliffe J, Adams R, Hoffman M, Lang D, Schlegel D, Prabhat M (2015) Celeste: Variational inference for a generative model of astronomical images. In: Proceedings of the international conference on machine learning, Lille, France, vol 37, pp 2095–2103
Google Scholar
Rezende D, Mohamed S (2015) Variational inference with normalizing flows. In: Proceedings of the international conference on machine learning, Lille, France, vol 37, pp 1530–1538
Google Scholar
Riesselman AJ, Ingraham JB, Marks DS (2018) Deep generative models of genetic variation capture the effects of mutations. Nature Methods 15:816–822
Article
Google Scholar
Rosca M, Lakshminarayanan B, Warde-Farley D, Mohamed S (2017) Variational approaches for auto-encoding generative adversarial networks. arXiv e-prints 1706.04987
Google Scholar
Salimans T, Goodfellow I, Zaremba W, Cheung V, Radford A, Chen X, Chen X (2016) Improved techniques for training GANs. In: Advances in neural information processing systems, Barcelona, Spain, pp 2234–2242
Google Scholar
Scholkopf B, Sung KK, Burges CJ, Girosi F, Niyogi P, Poggio T, Vapnik V (1997) Comparing support vector machines with Gaussian kernels to radial basis function classifiers. IEEE Trans Signal Process 45(11):2758–2765
Article
Google Scholar
Sohn K, Lee H, Yan X (2015) Learning structured output representation using deep conditional generative models. In: Advances in neural information processing systems, Montreal, Canada, pp 3483–3491
Google Scholar
Sønderby CK, Raiko T, Maaløe L, Sønderby SK, Winther O (2016) Ladder variational autoencoders. In: Advances in neural information processing systems, Barcelona, Spain, pp 3738–3746
Google Scholar
Sønderby CK, Poole B, Mnih A (2017) Continuous relaxation training of discrete latent variable image models. In: Neural information processing systems - workshop on bayesian deep learning, Long Beach, USA
Google Scholar
Theis L, Oord Avd, Bethge M (2016) A note on the evaluation of generative models. In: Proceedings of the international conference on learning representations, San Juan, Puerto Rico
Google Scholar
Tishby N, Pereira FC, Bialek W (2000) The information bottleneck method. arXiv e-prints physics/0004057
Google Scholar
Tschannen M, Agustsson E, Lucic M (2018) Deep generative models for distribution-preserving lossy compression. In: Advances in neural information processing systems, Montreal, Canada, pp 5929–5940
Google Scholar
van den Berg R, Hasenclever L, Tomczak J, Welling M (2018) Sylvester normalizing flow for variational inference. In: Proceedings of the international conference on learning representations, Monterey, USA
Google Scholar
van den Oord A, Dieleman S, Zen H, Simonyan K, Vinyals O, Graves A, Kalchbrenner N, Senior A, Kavukcuoglu K (2016) WaveNet: A generative model for raw audio. In: ISCA speech synthesis workshop, Sunnyvale, USA, pp 125–125
Google Scholar
van den Oord A, Vinyals O, kavukcuoglu k (2017) Neural discrete representation learning. In: Advances in neural information processing systems, Long Beach, USA, pp 6306–6315
Google Scholar
Wan L, Zeiler M, Zhang S, Cun YL, Fergus R (2013) Regularization of neural networks using dropconnect. In: Proceedings of the international conference on machine learning, Atlanta, USA, vol 28, pp 1058–1066
Google Scholar
Xiao H, Rasul K, Vollgraf R (2017) Fashion-MNIST: A novel image dataset for benchmarking machine learning algorithms. arXiv e-prints 1708.07747
Google Scholar