Adir, N. (2005). Elucidation of the molecular structures of components of the phycobilisome: Reconstructing a giant. Photosynthesis Research, 85(1), 15–32.
Article
CAS
PubMed
Google Scholar
Alcocer, J., Lugo, A., del Rosario Sánchez, M., & Escobar, E. (1998). Isabela Crater-Lake: A Mexican insular saline lake. Hydrobiologia, 381(1–3), 1–7.
Article
CAS
Google Scholar
Ammermann, S., Schneider, T., Westermann, M., Hillebrand, H., & Rhiel, E. (2013). Ejectisins: Tough and tiny polypeptides are a major component of cryptophycean ejectisomes. Protoplasma, 250(2), 551–563.
Article
CAS
PubMed
Google Scholar
Anderson, E. (1962). A cytological study of Chilomonas paramaecium with particular reference to the so-called trichocysts. Journal of Protozoology, 9(4), 380–395.
Article
CAS
PubMed
Google Scholar
Antia, N. J., Cheng, J. Y., & Taylor, F. J. R. (1969). The heterotrophic growth of a marine photosynthetic cryptomonad (Chroomonas salina). In R. Margalef (Ed.), Proceedings of the international seaweed symposium (pp. 17–29). Madrid: Subsecretaria De La Marina Mercante.
Google Scholar
Apt, K. E., Collier, J. L., & Grossmanm, A. R. (1995). Evolution of the phycobiliproteins. Journal of Molecular Biology, 248(1), 79–96.
Article
CAS
PubMed
Google Scholar
Archibald, J. M. (2012). The evolution of algae by secondary and tertiary endosymbiosis. In G. Piganeau (Ed.), Genomic insights into the biology of algae (pp. 87–118). London: Elsevier/Academic.
Chapter
Google Scholar
Baurain, D., Brinkmann, H., Petersen, J., Rodriguez-Ezpeleta, N., Stechmann, A., Demoulin, V., et al. (2010). Phylogenomic evidence for separate acquisition of plastids in cryptophytes, haptophytes, and stramenopiles. Molecular Biology and Evolution, 27(7), 1698–1709.
Article
CAS
PubMed
Google Scholar
Bernard, C., Simpson, A. G. B., & Patterson, D. J. (2000). Some free-living flagellates (Protista) from anoxic habitats. Ophelia, 52(2), 113–142.
Article
Google Scholar
Brennen, C., & Winet, H. (1977). Fluid mechanics of propulsion by cilia and flagella. Annual Review of Fluid Mechanics, 9, 339–398.
Article
Google Scholar
Brett, S. J., & Wetherbee, R. (1986). A comparative study of periplast structure in Cryptomonas cryophila and C. ovata (Cryptophyceae). Protoplasma, 131(1), 23–31.
Article
Google Scholar
Broughton, M. J., Howe, C. J., & Hiller, R. G. (2006). Distinctive organization of genes for light-harvesting proteins in the cryptophyte alga Rhodomonas. Gene, 369(1), 72–79.
Article
CAS
PubMed
Google Scholar
Brown, M. R., Jeffrey, S. W., Vokman, J. K., & Dunstan, G. A. (1997). Nutritional properties of microalgae for mariculture. Aquaculture, 151(1–4), 315–331.
Article
CAS
Google Scholar
Brugerolle, G. (2002). Cryptophagus subtilis: A new parasite of cryptophytes affiliated with the Perkinsozoa lineage. European Journal of Protistology, 37(4), 379–390.
Article
Google Scholar
Brugerolle, G., & Mignot, J. P. (1979). Observations sur le cycle l’ultrastructure et la position systematique de Spiromonas perforans (Bodo perforans Hollande 1938), flagellé parasite de Chilomonas paramaecium: ses relations avec les dinoflagellés et sporozoaires. Protistologica, 15(2), 183–196.
Google Scholar
Burkholder, J. M., & Glasgow, H. B. (1997). Pfiesteria piscida and other Pfiesteria-like dinoflagellates: Behavior, impacts, and environmental controls. Limnology and Oceanography, 42(5), 1052–1075.
Article
Google Scholar
Burki, F., Shalchian-Tabrizi, K., & Pawlowski, J. (2008). Phylogenomics reveals a new ‘megagroup’ including most photosynthetic eukaryotes. Biology Letters, 4(4), 366–369.
Article
PubMed
PubMed Central
Google Scholar
Burki, F., Okamoto, N., Pombert, J. F., & Keeling, P. J. (2012). The evolutionary history of haptophytes and cryptophytes: Phylogenomic evidence for separate origins. Proceedings of the Royal Society of London Series B, 279(1736), 2246–2254.
Article
PubMed
PubMed Central
Google Scholar
Butcher, R. W. (1967). An introductory account of the smaller algae of British coastal waters. Part IV: Cryptophyceae (Fishery investigations. Series IV, 54 pp. + 20 plates). London: Ministry of Agriculture, Fisheries and Food.
Google Scholar
Camacho, A., Vicente, E., & Miracle, M. R. (2001). Ecology of Cryptomonas at the chemocline of a karstic sulphate-rich lake. Marine and Freshwater Research, 52(5), 805–815.
Article
CAS
Google Scholar
Cavalier-Smith, T. (1986). The kingdom Chromista: Origin and systematics. In F. E. Round & D. J. Chapman (Eds.), Progress in phycological research (Vol. 4, pp. 309–347). Bristol: Biopress.
Google Scholar
Cavalier-Smith, T. (1999). Principles of protein and lipid targeting in secondary symbiogenesis: Euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. Journal of Eukaryotic Microbiology, 46(4), 347–366.
Article
CAS
PubMed
Google Scholar
Clay, B. L., & Kugrens, P. (1999). Characterization of Hemiselmis amylosa sp. nov. and phylogenetic placement of the blue-green cryptomonads H. amylosa and Falcomonas daucoides. Protist, 150(3), 297–310.
Article
CAS
PubMed
Google Scholar
Clay, B. L., Kugrens, P., & Lee, R. E. (1999). A revised classification of the Cryptophyta. Botanical Journal of the Linnean Society, 131(2), 131–151.
Article
Google Scholar
Collini, E., Wong, C. Y., Wilk, K. E., Curmi, P. M. G., Brumer, P., & Scholes, G. D. (2010). Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature, 463(4), 644–648.
Article
CAS
PubMed
Google Scholar
Curtis, B. A., Tanifuji, G., Burki, F., Gruber, A., Irimia, M., Maruyama, S., et al. (2012). Algal genomes reveal evolutionary mosaicism and the fate of nucleomorphs. Nature, 492(7427), 59–65.
Article
CAS
PubMed
Google Scholar
Deane, J. A., Hill, D. R. A., Brett, S. J., & McFadden, G. I. (1998). Hanusia phi gen. et sp. nov. (Cryptophyceae): Characterization of ‘Cryptomonas sp. Φ’. European Journal of Phycology, 33(2), 149–154.
Article
Google Scholar
Deane, J. A., Strachan, I. M., Saunders, G. W., Hill, D. R. A., & McFadden, G. I. (2002). Cryptomonad evolution: Nuclear 18S rDNA phylogeny versus cell morphology and pigmentation. Journal of Phycology, 38(6), 1236–1244.
Article
CAS
Google Scholar
Deschamps, P., Haferkamp, I., Dauvillée, D., Haebel, S., Steup, M., Buléon, A., et al. (2006). Nature of the periplastidial pathway of starch synthesis in the cryptophyte Guillardia theta. Eukaryotic Cell, 5(6), 954–963.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodge, J. D. (1969). Ultrastructure of Chroomonas mesostigmatica Butcher (Cryptophyceae). Archiv für Mikrobiologie, 69(3), 266–280.
Article
Google Scholar
Douglas, S. E., & Penny, S. L. (1999). The plastid genome of the cryptophyte alga, Guillardia theta: Complete sequence and conserved synteny groups confirm its common ancestry with red algae. Journal of Molecular Evolution, 48(2), 236–244.
Article
CAS
PubMed
Google Scholar
Douglas, S., Zauner, S., Fraunholz, M., Beaton, M., Penny, S., Deng, L.-T., et al. (2001). The highly reduced genome of an enslaved algal nucleus. Nature, 410(6832), 1091–1096.
Article
CAS
PubMed
Google Scholar
Doust, A. B., Wilk, K. E., Curmi, P. M. G., & Scholes, G. D. (2006). The photophysics of cryptophyte light harvesting. Journal of Photochemistry and Photobiology A: Chemistry, 184(1–2), 1–17.
Article
CAS
Google Scholar
Edwards, P. (1976). A classification of plants into higher taxa based on cytological and biochemical criteria. Taxon, 25(5–6), 529–542.
Article
Google Scholar
Ehrenberg, C.G. (1831). Symbolae physicae seu icones et descriptiones animalium evertebratorum sepositis insectis quae ex itinere per Africanum Borealem et Asiam Occidentalem Friderici Guilelmi Hemprich et Christiani Godofredi Ehrenberg medicinae et chirurgiae doctorum studio novae aut illustratae redierunt. Berlin: Mittler.
Google Scholar
Ehrenberg, C. G. (1832). Über die Entwickelung und Lebensdauer der Infusionsthiere; nebst ferneren Beiträgen zu einer Vergleichung ihrer organischen Systeme. Abhandlungen der Königlichen Akademie der Wissenschaften Berlin, Physikalische Klasse, 1831, 1–154.
Google Scholar
Ehrenberg, C. G. (1838). Die Infusionsthiere als vollkommene Organismen: Ein Blick in das tiefere organische Leben der Natur. Nebst einem Atlas von 64 colorirten Kupfertafeln (Vol. I + II). Leipzig: Voss.
Book
Google Scholar
Erata, M., Kubota, M., Takahashi, T., Inouye, I., & Watanabe, M. (1995). Ultrastructure and phototactic action spectra of two genera of cryptophyte flagellate algae, Cryptomonas and Chroomonas. Protoplasma, 188(3–4), 258–266.
Article
Google Scholar
Ettl, H. (1980). Über die Zweiteiligkeit der Chromatophoren bei Cryptomonaden. Plant Systematics and Evolution, 135(3–4), 227–234.
Article
Google Scholar
Ettl, H., & Moestrup, Ø. (1980). On an intracellular parasite in Cryptomonas (Cryptophyceae). Plant Systematics and Evolution, 135(3–4), 211–226.
Article
Google Scholar
Fields, S. D., & Rhodes, R. G. (1991). Ingestion and retention of Chroomonas spp. (Cryptophyceae) by Gymnodinium acidotum (Dinophyceae). Journal of Phycology, 27(4), 525–529.
Article
Google Scholar
Gantt, E., Edwards, M. R., & Provasoli, L. (1971). Chloroplast structure of the Cryptophyceae. The Journal of Cell Biology, 48(2), 280–290.
Article
CAS
PubMed
PubMed Central
Google Scholar
Garibotti, I. A., Vernet, M., Ferrario, M. E., Smith, R. C., Ross, R. M., & Quetin, L. B. (2003). Phytoplankton spatial distribution patterns along the Western Antarctic Peninsula (Southern Ocean). Marine Ecology Progress Series, 261(1), 21–39.
Article
Google Scholar
Gasol, J. M., Guerrero, R., & Pedros-Alió, C. (1992). Spatial and temporal dynamics of a metalimnetic Cryptomonas peak. Journal of Plankton Research, 14(11), 1565–1579.
Article
Google Scholar
Gervais, F. (1997). Diel vertical migration of Cryptomonas and Chromatium in the deep chlorophyll maximum of a eutrophic lake. Journal of Plankton Research, 19(5), 533–550.
Article
Google Scholar
Gibbs, S. P. (1979). The route of entry of cytoplasmically synthesized proteins into chloroplasts of algae possessing chloroplast ER. Journal of Cell Science, 35(1), 253–256.
CAS
PubMed
Google Scholar
Gillott, M. A., & Gibbs, S. P. (1980). The cryptomonad nucleomorph: Its ultrastructure and evolutionary significance. Journal of Phycology, 16(4), 558–568.
Article
Google Scholar
Gillott, M. A., & Gibbs, S. P. (1983). Comparison of the flagellar rootlets and periplast in two marine cryptomonads. Canadian Journal of Botany, 61(7), 1964–1978.
Article
Google Scholar
Glazer, A. N., & Wedemayer, G. J. (1995). Cryptomonad biliproteins – An evolutionary perspective. Photosynthesis Research, 46(1–2), 93–105.
Article
CAS
PubMed
Google Scholar
Gould, S. B., Fan, F., Hempel, F., Maier, U.-G., & Klösgen, R. B. (2007). Translocation of a phycoerythrin α subunit across five biological membranes. The Journal of Biological Chemistry, 282(41), 30295–30302.
Article
CAS
PubMed
Google Scholar
Gould, S. B., Waller, R. F., & McFadden, G. I. (2008). Plastid evolution. Annual Review of Plant Biology, 59(1), 491–517.
Article
CAS
PubMed
Google Scholar
Gould, S. B., Maier, U.-G., & Martin, W. F. (2015). Protein import and the origin of red complex plastids. Current Biology, 25(12), R515–R521.
Article
CAS
PubMed
Google Scholar
Govorunova, E. G., Sineshchekov, O. A., Janz, R., Liu, X., & Spudich, J. L. (2015). Natural light-gated anion channels: A family of microbial rhodopsins for advanced optogenetics. Science, 349(6248), 647–650.
Article
CAS
PubMed
PubMed Central
Google Scholar
Grim, J. N., & Staehelin, L. A. (1984). The ejectisomes of the flagellate Chilomonas paramecium: Visualization by freeze-fracture and isolation techniques. Journal of Protozoology, 31(2), 259–267.
Article
CAS
PubMed
Google Scholar
Gustafson, D. E., Stoecker, D. K., Johnson, M. D., Van Heukelem, W. F., & Sneider, K. (2000). Cryptophyte algae are robbed of their organelles by the marine ciliate Mesodinium rubrum. Nature, 405(6790), 1049–1052.
Article
CAS
PubMed
Google Scholar
Hagemann, M., & Pade, N. (2015). Heterosides – Compatible solutes occurring in prokaryotic and eukaryotic phototrophs. Plant Biology, 17(5), 927–934.
Article
CAS
PubMed
Google Scholar
Hammer, A., Schumann, R., & Schubert, H. (2002). Light and temperature acclimation of Rhodomonas salina (Cryptophyceae): Photosynthetic performance. Aquatic Microbial Ecology, 29(3), 287–296.
Article
Google Scholar
Harrop, S. J., Wilk, K. E., Dinshaw, R., Collini, E., Mirkovic, T., Teng, C. Y., Oblinsky, D. G., Green, B. R., Hoef-Emden, K., Hiller, R. G., Scholes, G. D., & Curmi, P. M. G. (2014). Single-residue insertion switches the quaternary structure and exciton states of cryptophyte light-harvesting proteins. Proceedings of the National Academy of Sciences of the United States of America, 111(26), E2666–E2675.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hibberd, D. J. (1979). The structure of phylogenetic significance of the flagellar transition region in the chlorophyll c-containing algae. BioSystems, 11(4), 243–261.
Article
CAS
PubMed
Google Scholar
Hibberd, D. J., Greenwood, A. D., & Bronwen Griffiths, H. (1971). Observations on the ultrastructure of the flagella and periplast in the Cryptophyceae. British Phycological Journal, 6(1), 61–72.
Article
Google Scholar
Hill, D. R. A. (1991a). A revised circumscription of Cryptomonas (Cryptophyceae) based on examinations of Australian strains. Phycologia, 30(2), 170–188.
Article
Google Scholar
Hill, D. R. A. (1991b). Chroomonas and other blue-green cryptomonads. Journal of Phycology, 27(1), 133–145.
Article
Google Scholar
Hill, D. R. A. (1991c). Diversity of heterotrophic cryptomonads. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 235–240). Oxford: Clarendon.
Google Scholar
Hill, D. R. A., & Rowan, K. S. (1989). The biliproteins of the Cryptophyceae. Phycologia, 28(4), 455–463.
Article
Google Scholar
Hill, D. R. A., & Wetherbee, R. (1986). Proteomonas sulcata gen. et sp. nov. (Cryptophyceae), a cryptomonad with two morphologically distinct and alternating forms. Phycologia, 25(4), 521–543.
Article
Google Scholar
Hill, D. R. A., & Wetherbee, R. (1988). The structure and taxonomy of Rhinomonas pauca gen. et sp. nov. (Cryptophyceae). Phycologia, 27(3), 355–365.
Article
Google Scholar
Hill, D. R. A., & Wetherbee, R. (1989). A reappraisal of the genus Rhodomonas (Cryptophyceae). Phycologia, 28(2), 143–158.
Article
Google Scholar
Hill, D. R. A., & Wetherbee, R. (1990). Guillardia theta gen. et sp. nov. (Cryptophyceae). Canadian Journal of Botany, 68(9), 1873–1876.
Article
Google Scholar
Hirakawa, Y., & Ishida, K.-I. (2014). Polyploidy of endosymbiotically derived genomes in complex algae. Genome Biology and Evolution, 6(4), 974–980.
Article
PubMed
PubMed Central
CAS
Google Scholar
Hoef-Emden, K. (2005). Multiple independent losses of photosynthesis and differing evolutionary rates in the genus Cryptomonas (Cryptophyceae): Combined phylogenetic analyses of DNA sequences of the nuclear and nucleomorph ribosomal operons. Journal of Molecular Evolution, 60(2), 183–195.
Article
CAS
PubMed
Google Scholar
Hoef-Emden, K. (2007). Revision of the genus Cryptomonas (Cryptophyceae) II: Incongruences between classical morphospecies concept and molecular phylogeny in smaller pyrenoid-less cells. Phycologia, 46(4), 402–428.
Article
Google Scholar
Hoef-Emden, K. (2008). Molecular phylogeny of phycocyanin-containing cryptophytes: Evolution of biliproteins and geographical distribution. Journal of Phycology, 44(4), 985–993.
Article
PubMed
Google Scholar
Hoef-Emden, K. (2014). Osmotolerance in the Cryptophyceae: Jacks-of-all-trades in the Chroomonas clade. Protist, 165(2), 123–143.
Article
CAS
PubMed
Google Scholar
Hoef-Emden, K., & Melkonian, M. (2003). Revision of the genus Cryptomonas (Cryptophyceae): A combination of molecular phylogeny and morphology provides insights into a long-hidden dimorphism. Protist, 154(3–4), 371–409. Corrigendum: Hoef-Emden, K., & Melkonian, M. (2008). Protist, 159(3), 507.
Google Scholar
Hoef-Emden, K., Marin, B., & Melkonian, M. (2002). Nuclear and nucleomorph SSU rDNA phylogeny in the Cryptophyta and the evolution of cryptophyte diversity. Journal of Molecular Evolution, 55(2), 161–179.
Article
CAS
PubMed
Google Scholar
Hollande, A. (1942). Protistologica XCI – Étude cytologique et biologique de quelques flagellés libres. Volvocales, cryptomonadines, eugléniens, protomastigines. Archives de Zoologie Éxperimental et Générale, 83(1), 1–268.
Google Scholar
Huber-Pestalozzi, G. (1950). Das Phytoplankton des Süßwassers. 3. Teil. Cryptophyceae, Chloromonadophyceae, Dinophyceae. In H.-J. Elster & W. Ohle (Eds.), Die Binnengewässer (1st ed., Vol. XVI, pp. 2–78). Stuttgart: E. Schweizerbarth’sche Verlagsbuchhandlung.
Google Scholar
Javornický, P., & Hindák, F. (1970). Cryptomonas frigoris spec. nova (Cryptophyceae), the new cyst-forming flagellate from the snow of the High Tatras. Biológia (Bratislava), 25(4), 241–250.
Google Scholar
Jenkins, J., Hiller, R. G., Speirs, J., & Godovac-Zimmermann, J. (1990). A genomic clone encoding a cryptophyte phycoerythrin α-subunit. Evidence for three α-subunits and an N-terminal membrane transit sequence. FEBS Letters, 273(1–2), 191–194.
Article
CAS
PubMed
Google Scholar
Kauss, H. (1981). Sensing of volume changes by Poterioochromonas involves a Ca2+-regulated rystem rhich controls activation of isofloridoside-phosphate synthase. Plant Physiology, 68(2), 420–424.
Article
CAS
PubMed
PubMed Central
Google Scholar
Keeling, P. J. (2013). The number, speed, and impact of plastid endosymbioses in eukaryotic evolution. Annual Review of Plant Biology, 64(1), 583–607.
Article
CAS
PubMed
Google Scholar
Keeling, P. J., Deane, J. A., Hink-Schauer, C., Douglas, S. E., Maier, U.-G., & McFadden, G. I. (1999). The secondary endosymbiont of the cryptomonad Guillardia theta contains alpha-, beta-, and gamma-tubulin genes. Molecular Biology and Evolution, 16(9), 1308–1313.
Article
CAS
PubMed
Google Scholar
Kereïche, S., Kouřil, R., Oostergetel, G. T., Fusetti, F., Boekema, E. J., Doust, A. B., van der Weij-de Wit, C. D., & Dekker, J. P. (2008). Association of chlorophyll a/c
2
complexes to photosystem I and photosystem II in the cryptophyte Rhodomonas CS24. Biochimica et Biophysica Acta, 1777(9), 1122–1128.
Article
PubMed
CAS
Google Scholar
Kim, E., & Archibald, J. M. (2013). Ultrastructure and molecular phylogeny of the cryptomonad Goniomonas avonlea sp. nov. Protist, 164(2), 160–182.
Article
CAS
PubMed
Google Scholar
Klaveness, D. (1982). The Cryptomonas-Caulobacter consortium: Facultative ectocommensalism with possible taxonomic consequences? Nordic Journal of Botany, 2(2), 183–188.
Article
Google Scholar
Klaveness, D. (1985). Classical and modern criteria for determining species of the Cryptophyceae. Bulletin of the Plankton Society of Japan, 32(2), 111–123.
Google Scholar
Klaveness, D. (1988). Ecology of the Cryptomonadida: A first review. In C. D. Sandgren (Ed.), Growth and reproductive strategies of freshwater phytoplankton (pp. 105–133). Cambridge: Cambridge University Press.
Google Scholar
Knuckey, R. M., Semmens, G. L., Mayer, R. J., & Rimmer, M. A. (2005). Development of an optimal microalgal diet for the culture of the calanoid copepod Acartia sinjiensis. Aquaculture, 249(1–4), 339–351.
Article
Google Scholar
Kugrens, P., & Clay, B. L. (2002). Cryptomonads. In J. D. Wehr & R. G. Sheath (Eds.), Freshwater algae of North America – Ecology and classification (pp. 715–755). San Diego: Academic.
Google Scholar
Kugrens, P., & Lee, R. E. (1987). An ultrastructural survey of cryptomonad periplasts using quick-freezing freeze fracture techniques. Journal of Phycology, 23(Suppl. S2), 365–376.
Article
Google Scholar
Kugrens, P., & Lee, R. E. (1988). Ultrastructure of fertilization in a cryptomonad. Journal of Phycology, 24(3), 385–393.
Article
Google Scholar
Kugrens, P., & Lee, R. E. (1990). Ultrastructural evidence for bacterial incorporation and myxotrophy in the photosynthetic cryptomonad Chroomonas pochmanni Huber-Pestalozzi (Cryptomonadida). Journal of Protozoology, 37(4), 263–267.
Article
Google Scholar
Kugrens, P., & Lee, R. E. (1991). Organization of cryptomonads. In D. J. Patterson & J. Larsen (Eds.), The biology of free-living heterotrophic flagellates (pp. 2195–2233). Oxford: Clarendon.
Google Scholar
Kugrens, P., Lee, R. E., & Andersen, R. A. (1986). Cell form and surface patterns in Chroomonas and Cryptomonas cells (Cryptophyta) as revealed by scanning electron microscopy. Journal of Phycology, 22(4), 512–522.
Article
Google Scholar
Kugrens, P., Lee, R. E., & Andersen, R. A. (1987). Ultrastructural variations in cryptomonad flagella. Journal of Phycology, 23(4), 511–518.
Article
Google Scholar
Lane, C. E., & Archibald, J. M. (2008). New marine members of the genus Hemiselmis (Cryptomonadales, Cryptophyceae). Journal of Phycology, 44(2), 439–450.
Article
CAS
PubMed
Google Scholar
Lane, C. E., van den Heuvel, K., Kozera, C., Curtis, B. A., Parsons, B. J., Bowman, S., & Archibald, J. M. (2007). Nucleomorph genome of Hemiselmis andersenii reveals complete intron loss and compaction as a driver of protein structure and function. Proceedings of the National Academy of Sciences of the United States of America, 104(50), 19908–19913.
Article
CAS
PubMed
PubMed Central
Google Scholar
Larsen, J., & Patterson, D. J. (1990). Some flagellates (Protista) from tropical marine sediments. Journal of Natural History, 24(4), 801–937.
Article
Google Scholar
Lazarus, D. B., & Jahn, R. (1998). Using the Ehrenberg collection. Diatom Research, 13(2), 273–291.
Article
Google Scholar
Lee, R. E., & Kugrens, P. (1991). Katablepharis ovalis, a colorless flagellate with interesting cytological characteristics. Journal of Phycology, 27(4), 505–515.
Article
Google Scholar
Lee, R. E., Kugrens, P., & Mylnikov, A. P. (1991). Feeding apparatus of the colorless flagellate Katablepharis (Cryptophyceae). Journal of Phycology, 27(6), 725–733.
Article
Google Scholar
Lee, W. J., Simpson, A. G. B., & Patterson, D. J. (2005). Free-living heterotrophic flagellates from freshwater sites in Tasmania (Australia), a field survey. Acta Protozoologica, 44(4), 321–350.
Google Scholar
Lewitus, A. J., Glasgow, H. B., & Burkholder, J. M. (1999). Kleptoplastidy in the toxic dinoflagellate Pfiesteria piscicida (Dinophyceae). Journal of Phycology, 35(2), 303–312.
Article
Google Scholar
Lichtlé, C. (1979). Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae) – I. Cell and photosynthetic apparatus transformations and encystment. Protoplasma, 101(3), 283–299.
Article
Google Scholar
Lichtlé, C. (1980). Effects of nitrogen deficiency and light of high intensity on Cryptomonas rufescens (Cryptophyceae) – II. Excystment. Protoplasma, 102(1–2), 11–19.
Article
Google Scholar
Lichtlé, C., Duval, J. C., & Lemoine, Y. (1987). Comparative biochemical, functional and ultrastructural studies of photosystem particles from a Cryptophycea: Cryptomonas rufescens; isolation of an active phycoerythrin particle. Biochimica et Biophysica Acta, 894(1), 76–90.
Article
Google Scholar
Ludwig, M., & Gibbs, S. P. (1985). DNA is present in the nucleomorph of cryptomonads: Further evidence that the chloroplast evolved from a eukaryotic endosymbiont. Protoplasma, 127(1–2), 9–20.
Article
Google Scholar
Majaneva, M., Remonen, I., Rintala, J.-M., Belevich, I., Kremp, A., Setälä, O., Jokitalo, E., & Blomster, J. (2014). Rhinomonas nottbecki n. sp. (Cryptomonadales) and molecular phylogeny of the family Pyrenomonadaceae. Journal of Eukaryotic Microbiology, 61(5), 480–492.
Article
CAS
PubMed
Google Scholar
Marin, B., Klingberg, M., & Melkonian, M. (1998). Phylogenetic relationships among the Cryptophyta: Analyses of nuclear-encoded SSU rRNA sequences support the monophyly of extant plastid-containing lineages. Protist, 149(3), 265–276.
Article
CAS
PubMed
Google Scholar
McFadden, G. I., Gilson, P. R., & Hill, D. R. A. (1994). Goniomonas: rRNA sequences indicate that that this phagotrophic flagellate is a close relative to the host component of cryptomonads. European Journal of Phycology, 29(1), 29–32.
Article
Google Scholar
McKerracher, L., & Gibbs, S. P. (1982). Cell and nucleomorph division in the alga Cryptomonas. Canadian Journal of Botany, 60(11), 2440–2452.
Article
Google Scholar
Melkonian, M., Beech, P. L., Katsaros, C., & Schulze, D. (1992). Centrin-mediated cell motility in algae. In M. Melkonian (Ed.), Algal cell motility (pp. 179–221). New York: Chapman and Hall.
Chapter
Google Scholar
Meyer, S. R., & Pienaar, R. N. (1984a). The microanatomy of Chroomonas africana sp. nov. (Cryptophyceae). South African Journal of Botany, 3(5), 306–319.
Article
Google Scholar
Meyer, S. R., & Pienaar, R. N. (1984b). Mitosis and cytokinesis in Chroomonas africana Meyer & Pienaar (Cryptophyceae). South African Journal of Botany, 3(5), 320–330.
Article
Google Scholar
Meyer, S. R. (1987). The taxonomic implications of the ultrastructure and cell division of a plastid-containing Chroomonas sp. (Cryptophyceae) from Rocky Bay, Natal, South Africa. South African Journal of Botany, 53(2), 129–139.
Article
Google Scholar
Mignot, J.-P. (1965). Étude ultrastructurale de (Cyathomonas truncata) From. (flagellé cryptomonadine). Journal de Microscopie, 4(2), 239–252.
Google Scholar
Mignot, J.-P., Joyon, L., & Pringsheim, E. G. (1968). Compléments a l’étude cytologique des cryptomonadines. Protistologica, 4(4), 493–506.
Google Scholar
Minnhagen, S., & Janson, S. (2006). Genetic analyses of Dinophysis spp. support kleptoplastidy. FEMS Microbiology Ecology, 57(1), 47–54.
Article
CAS
PubMed
Google Scholar
Moore, C. E., Curtis, B., Mills, T., Tanifuji, G., & Archibald, J. M. (2012). Nucleomorph genome sequence of the cryptophyte alga Chroomonas mesostigmatica CCMP1168 reveals lineage-specific gene loss and genome complexity. Genome Biology and Evolution, 4(11), 1162–1175. doi:10.1093/gbe/evs090.
Article
PubMed
PubMed Central
CAS
Google Scholar
Morrall, S., & Greenwood, A. D. (1980). A comparison of the periodic substructure of the trichocysts of the Cryptophyceae and Prasinophyceae. BioSystems, 12(1–2), 71–82.
Article
CAS
PubMed
Google Scholar
Morrall, S., & Greenwood, A. D. (1982). Ultrastructure of nucleomorph division in species of Cryptophyceae and its evolutionary implications. Journal of Cell Science, 54(1), 311–328.
Google Scholar
Novarino, G. (2003). A companion to the identification of cryptomonad flagellates (Cryptophyceae = Cryptomonadea). Hydrobiologia, 502(1–3), 225–270.
Article
Google Scholar
Novarino, G., Lucas, I. A. N., & Morrall, S. (1994). Observations on the genus Plagioselmis (Cryptophyceae). Cryptogamie Algologie, 15(2), 87–107.
Google Scholar
Oakley, B. R. (1978). Mitotic spindle formation in Cryptomonas and Chroomonas (Cryptophyceae). Protoplasma, 95(4), 333–346.
Article
Google Scholar
Oakley, B. R., & Bisalputra, T. (1977). Mitosis and cell division in Cryptomonas (Cryptophyceae). Canadian Journal of Botany, 55(22), 2789–2800.
Article
Google Scholar
Oakley, B. R., & Dodge, J. D. (1976). The ultrastructure of mitosis in Chroomonas salina (Cryptophyceae). Protoplasma, 88(2–4), 241–254.
Article
Google Scholar
Okamoto, N., & Inouye, I. (2005). The katablepharids are a distant sister group of the Cryptophyta: A proposal for Katablepharidophyta Divisio Nova/Katablepharida Phylum Novum based on SSU rDNA and beta-tubulin phylogeny. Protist, 156(2), 163–179.
Article
CAS
PubMed
Google Scholar
Okamoto, N., Chantangsi, C., Horák, A., Leander, B. S., & Keeling, P. J. (2009). Molecular phylogeny and description of the novel katablepharid Roombia truncata gen. et sp. nov., and establishment of the Hacrobia taxon nov. PLoS One, 4(9), e7080.
Article
PubMed
PubMed Central
CAS
Google Scholar
Onuma, R., & Horiguchi, T. (2015). Kleptochloroplast enlargement, karyoklepty and the distribution of the cryptomonad nucleus in Nusuttodinium (= Gymnodinium) aeruginosum (Dinophyceae). Protist, 166(2), 177–195.
Article
CAS
PubMed
Google Scholar
Oudot-Le Secq, M.-P., Grimwood, J., Shapiro, H., Armbrust, E. V., Bowler, C., & Green, B. R. (2007). Chloroplast genomes of the diatoms Phaeodactylum tricornutum and Thalassiosira pseudonana: Comparison with other plastid genomes of the red lineage. Molecular Genetics and Genomics, 277(4), 427–439.
Article
CAS
PubMed
Google Scholar
Patron, N. J., Inagaki, Y., & Keeling, P. J. (2007). Multiple gene phylogenies support the monophyly of cryptomonad and haptophyte host lineages. Current Biology, 17(10), 887–891.
Article
CAS
PubMed
Google Scholar
Patterson, D. J., & Hausmann, K. (1981). The behaviour of contractile vacuole complexes of cryptophycean flagellates. British Phycological Journal, 16(4), 429–439.
Article
Google Scholar
Patterson, D. J., & Simpson, A. G. B. (1996). Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. European Journal of Protistology, 32(4), 423–448.
Article
Google Scholar
Pedrós-Alió, C., Massana, R., Latasa, M., García-Cantizano, J., & Gasol, J. M. (1995). Predation by ciliates on a metalimnetic Cryptomonas population: Feeding rates, impact and effects of vertical migration. Journal of Plankton Research, 17(11), 2131–2154.
Article
Google Scholar
Pennick, N. (1981). Flagellar scales in Hemiselmis brunnescens Butcher and H. virescens Droop (Cryptophyceae). Archiv für Protistenkunde, 124(3), 267–270.
Article
Google Scholar
Pennington, F. C., Haxo, F. T., Borch, G., & Liaaen-Jensen, S. (1985). Carotenoids of Cryptophyceae. Biochemical Systematics and Ecology, 13(3), 215–219.
Article
CAS
Google Scholar
Perasso, L., Hill, D. R. A., & Wetherbee, R. (1992). Transformation and development of the flagellar apparatus of Cryptomonas ovata (Cryptophyceae) during cell division. Protoplasma, 170(1–2), 53–67.
Article
Google Scholar
Perasso, L., Brett, S. J., & Wetherbee, R. (1993). Pole reversal and the development of cell asymmetry during division in cryptomonad flagellates. Protoplasma, 174(1–2), 19–24.
Article
Google Scholar
Phlips, E. J., Havens, K. E., & Marques Lopes, M. R. (2008). Seasonal dynamics of phytoplankton in two Amazon flood plain lakes of varying hydrologic connectivity to the main river channel. Fundamental and Applied Limnology, 172(2), 99–109.
Article
CAS
Google Scholar
Pringsheim, E. G. (1944). Some aspects of taxonomy in the Cryptophyceae. New Phytologist, 43(2), 143–150.
Article
Google Scholar
Pringsheim, E. G. (1968). Zur Kenntnis der Cryptomonaden des Süßwassers. Nova Hedwigia, 16, 367–401.
Google Scholar
Rao, D. V. S., Pan, Y., Zitko, V., Bugden, G., & Mackeigan, K. (1993). Diarrhetic shellfish poisoning (DSP) associated with a subsurface bloom of Dinophysis norvegica in Bedford Basin, eastern Canada. Marine Ecology Progress Series, 97(1), 117–126.
Google Scholar
Roberts, K. R. (1984). Structure and significance of the cryptomonad flagellar apparatus. I. Cryptomonas ovata (Cryptophyta). Journal of Phycology, 20(4), 590–599.
Article
Google Scholar
Roberts, E. C., & Laybourn-Parry, J. (1999). Mixotrophic cryptophytes and their predators in the Dry Valley Lakes of Antarctica. Freshwater Biology, 41(4), 737–746.
Article
Google Scholar
Roberts, K. R., Stewart, K. D., & Mattox, K. R. (1981). The flagellar apparatus of Chilomonas paramecium (Cryptophyceae) and its comparison with certain zooflagellates. Journal of Phycology, 17(2), 159–167.
Article
Google Scholar
Sánchez Puerta, M. V., & Delwiche, C. F. (2008). A hypothesis for plastid evolution in chromalveolates. Journal of Phycology, 44(5), 1097–1107.
Article
PubMed
Google Scholar
Sánchez Puerta, M. V., Bachvaroff, T. R., & Delwiche, C. F. (2005). The complete plastid genome sequence of the haptophyte Emiliania huxleyi: A comparison to other plastid genomes. DNA Research, 12(2), 151–156.
Article
PubMed
Google Scholar
Santore, U. J. (1982). The ultrastructure of Hemiselmis brunnescens and Hemiselmis virescens with additional observations on Hemiselmis rufescens and comments on the Hemiselmidaceae as a natural group of the Cryptophyceae. British Phycological Journal, 17(1), 81–99.
Article
Google Scholar
Santore, U. J. (1983). Flagellar and body scales in the Cryptophyceae. British Phycological Journal, 18(3), 239–248.
Article
Google Scholar
Santore, U. J. (1984). Some aspects of taxonomy in the Cryptophyceae. New Phytologist, 98(4), 627–646.
Article
Google Scholar
Santore, U. J. (1985). A cytological survey of the genus Cryptomonas (Cryptophyceae) with comments on its taxonomy. Archiv für Protistenkunde, 130(1–2), 1–52.
Article
Google Scholar
Santore, U. J. (1987). A cytological survey of the genus Chroomonas – With comments on the taxonomy of this natural group of the Cryptophyceae. Archiv für Protistenkunde, 134(1), 83–114.
Article
Google Scholar
Santore, U. J., & Greenwood, A. D. (1977). The mitochondrial complex in Cryptophyceae. Archives of Microbiology, 112(2), 207–218.
Article
CAS
PubMed
Google Scholar
Sato, T., Nagasato, C., Hara, Y., & Motomura, T. (2014). Cell cycle and nucleomorph division in Pyrenomonas helgolandii (Cryptophyta). Protist, 165(2), 113–122.
Article
CAS
PubMed
Google Scholar
Schnepf, E., & Melkonian, M. (1990). Bacteriophage-like particles in endocytic bacteria of Cryptomonas (Cryptophyceae). Phycologia, 29(3), 338–343.
Article
Google Scholar
Schnepf, E., Winter, S., & Mollenhauer, D. (1989). Gymnodinium aeruginosum (Dinophyta) – A blue-green dinoflagellate with a vestigial anucleate, cryptophycean endosymbiont. Plant Systematics and Evolution, 164(1–4), 75–91.
Article
Google Scholar
Sekar, S., & Chandramohan, M. (2008). Phycobiliproteins as a commodity: Trends in applied research, patents and commercialization. Journal of Applied Phycology, 20(2), 113–136.
Article
Google Scholar
Sensen, C. W., Heimann, K., & Melkonian, M. (1993). The production of clonal and axenic cultures of microalgae using fluorescence-activated cell sorting (FACS). European Journal of Phycology, 28(2), 93–97.
Article
Google Scholar
Shalchian-Tabrizi, K., Brate, J., Logares, R., Klaveness, D., Berney, C., & Jakobsen, K. S. (2008). Diversification of unicellular eukaryotes: Cryptomonad colonizations of marine and fresh waters inferred from revised 18S rRNA phylogeny. Environmental Microbiology, 10(10), 2635–2644.
Article
CAS
PubMed
Google Scholar
Skuja, H. (1948). Taxonomie des Phytoplanktons einiger Seen in Uppland, Schweden. Symbolae Botanicae Upsaliensis, 9(1), 1–399.
Google Scholar
Sleigh, M. A. (1991). Mechanisms of flagellar propulsion. A biologist’s view of the relation between structure, motion, and fluid mechanics. Protoplasma, 164(1–3), 45–53.
Article
Google Scholar
Starmach, K. (1974). Cryptophyceae – Kryptofity, Dinophyceae – Dinofity, Raphidophyceae – Rafidofity. In K. Starmach & J. Siemińska (Eds.), Flora Słodkowodna Polski (Vol. 4, pp. 7–112). Warszawa: Państwowe Wydawnictwo Naukowe.
Google Scholar
Stiller, J. W., Schreibe, J., Yue, J., Guo, H., Ding, Q., & Huang, J. (2014). The evolution of photosynthesis in chromist algae through serial endosymbioses. Nature Communications, 5, 5764. doi:10.1038/ncomms6764.
Article
CAS
PubMed
PubMed Central
Google Scholar
Surek, B., & Melkonian, M. (2004). CCAC – Culture Collection of Algae at the University of Cologne: A new collection of axenic algae with emphasis on flagellates. Nova Hedwigia, 79(1–2), 77–92.
Article
Google Scholar
Takishita, K., Koike, K., Maruyama, T., & Ogata, T. (2002). Molecular evidence for plastid robbery (kleptoplastidy) in Dinophysis, a dinoflagellate causing diarrhetic shellfish poisoning. Protist, 153(3), 293–302.
Article
CAS
PubMed
Google Scholar
Tanifuji, G., Onodera, N. T., Wheeler, T. J., Dlutek, M., Donaher, N., & Archibald, J. M. (2011). Complete nucleomorph genome sequence of the non-photosynthetic alga Cryptomonas paramecium reveals a core nucleomorph gene set. Genome Biology and Evolution, 3, 44–54. doi:10.1093/gbe/evq082.
Article
CAS
PubMed
Google Scholar
Taylor, D. L., & Lee, C. C. (1971). A new cryptomonad from Antarctica: Cryptomonas cryophila sp. nov. Archiv für Mikrobiologie, 75(4), 269–280.
Article
Google Scholar
Telford, W. G., Moss, M. W., Morseman, J. P., & Allnutt, F. C. T. (2001). Cryptomonad algal phycobiliproteins as fluorochromes for extracellular antigen detection by flow cytometry. Cytometry, 44(1), 16–23.
Article
CAS
PubMed
Google Scholar
Tirok, K., & Gaedke, U. (2007). Regulation of planktonic ciliate dynamics and functional composition during spring in Lake Constance. Aquatic Mircobial Ecology, 49(1), 87–100.
Article
Google Scholar
Tranvik, L. J., Porter, K. G., & Sieburth, J. M. (1989). Occurrence of bacterivory in Cryptomonas, a common fresh-water phytoplankter. Oecologia, 78(4), 473–476.
Article
PubMed
Google Scholar
Vesk, M., Dwarte, D., Fowler, S., & Hiller, R. G. (1992). Freeze fracture immunocytochemistry of light-harvesting pigment complexes in a cryptophyte. Protoplasma, 170(3–4), 166–176.
Article
Google Scholar
Viola, R., Nyvall, P., & Pedersen, M. (2001). The unique features of starch metabolism in red algae. Proceedings of the Royal Society of London B, 268(1474), 1417–1422.
Article
CAS
Google Scholar
von der Heyden, S., Chao, E. E., & Cavalier-Smith, T. (2004). Genetic diversity of goniomonads: An ancient divergence between marine and freshwater species. European Journal of Phycology, 39(4), 343–350.
Article
CAS
Google Scholar
Wawrik, F. (1969). Sexualität bei Cryptomonas sp. und Chlorogonium maximum. Nova Hedwigia, 8, 283–292.
Google Scholar
Wawrik, F. (1971). Zygoten und Cysten bei Stenocalyx klarnetii (Bourr.) Fott, Stenocalyx inkonstans Schmid und Chroomonas acuta Uterm. Nova Hedwigia, 21, 599–604.
Google Scholar
Wawrik, F. (1979). Eisschluß- und Eisbruchvegetationen in den Teichen des nördlichen Waldviertels 1977/1978. Archiv für Protistenkunde, 122(3–4), 247–266.
Article
Google Scholar
Weisse, T., & Kirchhoff, B. (1997). Feeding of the heterotrophic freshwater dinoflagellate Peridiniopsis beroliense on cryptophytes: Analysis by flow cytometry and electronic particle counting. Aquatic Microbial Ecology, 12(2), 153–164.
Article
Google Scholar
Wetherbee, R., Hill, D. R. A., & McFadden, G. I. (1986). Periplast structure of the cryptomonad flagellate Hemiselmis brunnescens. Protoplasma, 131(1), 11–22.
Article
Google Scholar
Wilk, K. E., Harrop, S. J., Jankova, L., Edler, D., Keenan, G., Sharples, F., et al. (1999). Evolution of a light-harvesting protein by addition of new subunits and rearrangement of conserved elements: Crystal structure of a cryptophyte phycoerythrin at 1.63-Å resolution. Proceedings of the National Academy of Sciences of the United States of America, 96(16), 8901–8906.
Article
CAS
PubMed
PubMed Central
Google Scholar
Yabuki, A., Kamikawa, R., Ishikawa, S. A., Kolisko, M., Kim, E., Tanabe, A. S., et al. (2014). Palpitomonas bilix represents a basal cryptist lineage: Insight into the character evolution in Cryptista. Scientific Reports, 4, 4641.
Article
PubMed
PubMed Central
CAS
Google Scholar
Yamagishi, T., Kai, A., & Kawai, H. (2012). Trichocyst ribbons of a cryptomonads are constituted of homologs of R-body proteins produced by the intracellular parasitic bacterium of Paramecium. Journal of Molecular Evolution, 74(3–4), 147–157.
Article
CAS
PubMed
Google Scholar