Skip to main content
Log in

Mechanisms of fear learning and extinction: synaptic plasticity–fear memory connection

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

The ability to memorize threat-associated cues and subsequently react to them, exhibiting escape or avoidance responses, is an essential, often life-saving behavioral mechanism that can be experimentally studied using the fear (threat) conditioning training paradigm. Presently, there is substantial evidence supporting the Synaptic Plasticity–Memory (SPM) hypothesis in relation to the mechanisms underlying the acquisition, retention, and extinction of conditioned fear memory.

Objectives

The purpose of this review article is to summarize findings supporting the SPM hypothesis in the context of conditioned fear control, applying the set of criteria and tests which were proposed as necessary to causally link lasting changes in synaptic transmission in corresponding neural circuits to fear memory acquisition and extinction with an emphasis on their pharmacological diversity.

Results

The mechanisms of synaptic plasticity in fear circuits exhibit complex pharmacological profiles and satisfy all four SPM criteria—detectability, anterograde alteration, retrograde alteration, and mimicry.

Conclusion

The reviewed findings, accumulated over the last two decades, provide support for both necessity and sufficiency of synaptic plasticity in fear circuits for fear memory acquisition and retention, and, in part, for fear extinction, with the latter requiring additional experimental work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Akirav I, Raizel H, Maroun M (2006) Enhancement of conditioned fear extinction by infusion of the GABA(A) agonist muscimol into the rat prefrontal cortex and amygdala. Eur J Neurosci 23:758–764

    Article  PubMed  Google Scholar 

  • Almeida-Corrêa S, Moulin TC, Carneiro CFD, Gonçalves MMC, Junqueira LS, Amaral OB (2015) Calcineurin inhibition blocks within-, but not between-session fear extinction in mice. Learn Mem 22:159–169

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alvarez RP, Johnson L, Grillon C (2007) Contextual-specificity of short-delay extinction in humans: renewal of fear-potentiated startle in a virtual environment. Learn Mem 14:247–253

    Article  PubMed  PubMed Central  Google Scholar 

  • Amano T, Unal CT, Paré D (2010) Synaptic correlates of fear extinction in the amygdala. Nat Neurosci 13:489–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amir A, Amano T, Pare D (2011) Physiological identification and infralimbic responsiveness of rat intercalated amygdala neurons. J Neurophysiol 105:3054–3066

    Article  PubMed  PubMed Central  Google Scholar 

  • An B, Hong I, Choi S (2012) Long-term neural correlates of reversible fear learning in the lateral amygdala. J Neurosci 32:16845–16856

    Article  CAS  PubMed  Google Scholar 

  • An B, Kim J, Park K, Lee S, Song S, Choi S (2017) Amount of fear extinction changes its underlying mechanisms. eLife 6:e25224

    Article  PubMed  PubMed Central  Google Scholar 

  • Armony JL, LeDoux JE (1997) How the brain processes emotional information. Ann N Y Acad Sci 821:259–270

    Article  CAS  PubMed  Google Scholar 

  • Arruda-Carvalho M, Clem RL (2014) Pathway-selective adjustment of prefrontal-amygdala transmission during fear encoding. J Neurosci 34:15601–15609

    Article  PubMed  CAS  Google Scholar 

  • Asede D, Bosch D, Lüthi A, Ferraguti F, Ehrlich I (2015) Sensory inputs to intercalated cells provide fear-learning modulated inhibition to the basolateral amygdala. Neuron 86:541–554

    Article  CAS  PubMed  Google Scholar 

  • Bauer EP, LeDoux JE (2004) Heterosynaptic long-term potentiation of inhibitory interneurons in the lateral amygdala. J Neurosci 24:9507–9512

    Article  CAS  PubMed  Google Scholar 

  • Bauer EP, Schafe GE, LeDoux JE (2002) NMDA receptors and L-type voltage-gated calcium channels contribute to long-term potentiation and different components of fear memory formation in the lateral amygdala. J Neurosci 22:5239–5249

    Article  CAS  PubMed  Google Scholar 

  • Belzung C, Turiault M, Griebel G (2014) Optogenetics to study the circuits of fear- and depression-like behaviors: a critical analysis. Pharmacol Biochem Behav 122:144–157

    Article  CAS  PubMed  Google Scholar 

  • Berretta S, Pantazopoulos H, Caldera M, Pantazopoulos P, Paré D (2005) Infralimbic cortex activation increases c-Fos expression in intercalated neurons of the amygdala. Neuroscience 132:943–953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bissière S, Humeau Y, Lüthi A (2003) Dopamine gates LTP induction in lateral amygdala by suppressing feedforward inhibition. Nat Neurosci 6:587–592

    Article  PubMed  CAS  Google Scholar 

  • Blair HT, Schafe GE, Bauer EP, Rodrigues SM, LeDoux JE (2001) Synaptic plasticity in the lateral amygdala: a cellular hypothesis of fear conditioning. Learn Mem 8:229–242

    Article  CAS  PubMed  Google Scholar 

  • Bloodgood DW, Sugam JA, Holmes A, Kash TL (2018) Fear extinction requires infralimbic cortex projections to the basolateral amygdala. Transl Psychiatry 8:60

    Article  PubMed  PubMed Central  Google Scholar 

  • Bouton ME (2002) Context, ambiguity, and unlearning: sources of relapse after behavioral extinction. Biol Psychiatry 52:976–986

    Article  PubMed  Google Scholar 

  • Boyden ES, Zhang F, Bamberg E, Nagel G, Deisseroth K (2005) Millisecond-timescale, genetically targeted optical control of neural activity. Nat Neurosci 8:1263–1268

    Article  CAS  PubMed  Google Scholar 

  • Brunzell DH, Kim JJ (2001) Fear conditioning to tone, but not to context, is attenuated by lesions of the insular cortex and posterior extension of the intralaminar complex in rats. Behav Neurosci 115:365–375

    Article  CAS  PubMed  Google Scholar 

  • Bukalo O, Pinard CR, Holmes A (2014) Mechanisms to medicines: elucidating neural and molecular substrates of fear extinction to identify novel treatments for anxiety disorders. Br J Pharmacol 171:4690–4718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bukalo O, Pinard CR, Silverstein S, Brehm C, Hartley ND, Whittle N, Colacicco G, Busch E, Patel S, Singewald N, Holmes A (2015) Prefrontal inputs to the amygdala instruct fear extinction memory formation. Sci Adv 1(6):e1500251

    Article  PubMed  PubMed Central  Google Scholar 

  • Burgos-Robles A, Vidal-Gonzalez I, Santini E, Quirk GJ (2007) Consolidation of fear extinction requires NMDA receptor-dependent bursting in the ventromedial prefrontal cortex. Neuron 53:871–880

    Article  CAS  PubMed  Google Scholar 

  • Busti D, Geracitano R, Whittle N, Dalezios Y, Mańko M, Kaufmann W et al (2011) Different fear states engage distinct networks within the intercalated cell clusters of the amygdala. J Neurosci 31:5131–5144

    Article  CAS  PubMed  Google Scholar 

  • Buzsáki G, Csicsvari J, Dragoi G, Harris K, Henze D, Hirase H (2002) Homeostatic maintenance of neuronal excitability by burst discharges in vivo. Cereb Cortex 12:893–899

    Article  PubMed  Google Scholar 

  • Cain CK, Blouin AM, Barad M (2002) L-type voltage-gated calcium channels are required for extinction, but not for acquisition or expression, of conditional fear in mice. J Neurosci 22:9113–9121

    Article  CAS  PubMed  Google Scholar 

  • Cain CK, Godsil BP, Jami S, Barad M (2005) The L-type calcium channel blocker nifedipine impairs extinction, but not reduced contingency effects, in mice. Learn Mem 12:277–284

    Article  PubMed  PubMed Central  Google Scholar 

  • Campeau S, Miserendino MJ, Davis M (1992) Intra-amygdala infusion of the N-methyl-D-aspartate receptor antagonist AP5 blocks acquisition but not expression of fear-potentiated startle to an auditory conditioned stimulus. Behav Neurosci 106:569–574

    Article  CAS  PubMed  Google Scholar 

  • Campos CA, Bowen AJ, Roman CW, Palmiter RD (2018) Encoding of danger by parabrachial CGRP neurons. Nature 555:617–622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang CH, Maren S (2009) Early extinction after fear conditioning yields a context-independent and short-term suppression of conditional freezing in rats. Learn Mem 16:62–68

    Article  PubMed  PubMed Central  Google Scholar 

  • Chhatwal JP, Myers KM, Ressler KJ, Davis M (2005) Regulation of gephyrin and GABAA receptor binding within the amygdala after fear acquisition and extinction. J Neurosci 25:502–506

    Article  CAS  PubMed  Google Scholar 

  • Cho JH, Bayazitov IT, Meloni EG, Myers KM, Carlezon WA, Zakharenko SS, Bolshakov VY (2012) Coactivation of thalamic and cortical pathways induces input timing-dependent plasticity in amygdala. Nat Neurosci 15:113–122

    Article  CAS  Google Scholar 

  • Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80:1491–1507

    Article  CAS  PubMed  Google Scholar 

  • Ciocchi S, Herry C, Grenier F, Wolff SBE, Letzkus JJ, Vlachos I, Ehrlich I, Sprengel R, Deisseroth K, Stadler MB, Müller C, Lüthi A (2010) Encoding of conditioned fear in central amygdala inhibitory circuits. Nature 468:277–282

    Article  CAS  PubMed  Google Scholar 

  • Clem RL, Huganir RL (2010) Calcium-permeable AMPA receptor dynamics mediate fear memory erasure. Science 330:1108–1112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clem RL, Schiller D (2016) New learning and unlearning: strangers or accomplices in threat memory attenuation? Trends Neurosci 39:340–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins DR, Paré D (2000) Differential fear conditioning induces reciprocal changes in the sensory responses of lateral amygdala neurons to the CS(+) and CS(−). Learn Mem 7:97–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Courtin J, Chaudun F, Rozeske RR, Karalis N, Gonzalez-Campo C, Wurtz H, Abdi A, Baufreton J, Bienvenu TCM, Herry C (2014) Prefrontal parvalbumin interneurons shape neuronal activity to drive fear expression. Nature 505:92–96

    Article  PubMed  CAS  Google Scholar 

  • Cruikshank SJ, Edeline JM, Weinberger NM (1992) Stimulation at a site of auditory-somatosensory convergence in the medial geniculate nucleus is an effective unconditioned stimulus for fear conditioning. Behav Neurosci 106:471–483

    Article  CAS  PubMed  Google Scholar 

  • Dalton GL, Wang YT, Floresco SB, Phillips AG (2008) Disruption of AMPA receptor endocytosis impairs the extinction, but not acquisition of learned fear. Neuropsychopharmacology 33:2416–2426

    Article  CAS  PubMed  Google Scholar 

  • Derkach V, Barria A, Soderling TR (1999) Ca2+/calmodulin-kinase II enhances channel conductance of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. Proc Natl Acad Sci U S A 96:3269–3274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dityatev AE, Bolshakov VY (2005) Amygdala, long-term potentiation, and fear conditioning. Neuroscientist 11:75–88

    Article  CAS  PubMed  Google Scholar 

  • Do-Monte FH, Manzano-Nieves G, Quiñones-Laracuente K, Ramos-Medina L, Quirk GJ (2015) Revisiting the role of infralimbic cortex in fear extinction with optogenetics. J Neurosci 35:3607–3615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvarci S, Pare D (2014) Amygdala microcircuits controlling learned fear. Neuron 82:966–980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvarci S, Popa D, Paré D (2011) Central amygdala activity during fear conditioning. J Neurosci 31:289–294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falls WA, Miserendino MJ, Davis M (1992) Extinction of fear-potentiated startle: blockade by infusion of an NMDA antagonist into the amygdala. J Neurosci 12:854–863

    Article  CAS  PubMed  Google Scholar 

  • Fontanez-Nuin DE, Santini E, Quirk GJ, Porter JT (2011) Memory for fear extinction requires mGluR5-mediated activation of infralimbic neurons. Cereb Cortex 21:727–735

    Article  PubMed  Google Scholar 

  • Fourcaudot E, Gambino F, Humeau Y, Casassus G, Shaban H, Poulain B, Luthi A (2008) cAMP/PKA signaling and RIM1α mediate presynaptic LTP in the lateral amygdala. Proc Natl Acad Sci U S A 105:15130–15135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franklin TB, Silva BA, Perova Z, Marrone L, Masferrer ME, Zhan Y, Kaplan A, Greetham L, Verrechia V, Halman A, Pagella S, Vyssotski AL, Illarionova A, Grinevich V, Branco T, Gross CT (2017) Prefrontal cortical control of a brainstem social behavior circuit. Nat Neurosci 20:260–270

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garner AR, Rowland DC, Hwang SY, Baumgaertel K, Roth BL, Kentros C, Mayford M (2012) Generation of a synthetic memory trace. Science 335:1513–1516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Geracitano R, Kaufmann WA, Szabo G, Ferraguti F, Capogna M (2007) Synaptic heterogeneity between mouse paracapsular intercalated neurons of the amygdala. J Physiol 585(Pt 1):117–134

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ghosh S, Chattarji S (2015) Neuronal encoding of the switch from specific to generalized fear. Nat Neurosci 18:112–120

    Article  CAS  PubMed  Google Scholar 

  • Goosens KA, Holt W, Maren S (2000) A role for amygdaloid PKA and PKC in the acquisition of long-term conditional fear memories in rats. Behav Brain Res 114:145–152

    Article  CAS  PubMed  Google Scholar 

  • Goosens KA, Hobin JA, Maren S (2003) Auditory-evoked spike firing in the lateral amygdala and Pavlovian fear conditioning: mnemonic code or fear bias? Neuron 40:1013–1022

    Article  CAS  PubMed  Google Scholar 

  • Han JH, Kushner SA, Yiu AP, Cole CJ, Matynia A, Brown RA, Neve RL, Guzowski JF, Silva AJ, Josselyn SA (2007) Neuronal competition and selection during memory formation. Science 316:457–460

    Article  CAS  PubMed  Google Scholar 

  • Han JH, Kushner SA, Yiu AP, Hsiang HLL, Buch T, Waisman A et al (2009) Selective erasure of a fear memory. Science 323:1492–1496

    Article  CAS  PubMed  Google Scholar 

  • Hayashi Y, Shi SH, Esteban JA, Piccini A, Poncer JC, Malinow R (2000) Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. Science 287:2262–2267

    Article  CAS  PubMed  Google Scholar 

  • Herry C, Garcia R (2002) Prefrontal cortex long-term potentiation, but not long-term depression, is associated with the maintenance of extinction of learned fear in mice. J Neurosci 22:577–583

    Article  CAS  PubMed  Google Scholar 

  • Herry C, Vouimba RM, Garcia R (1999) Plasticity in the mediodorsal thalamo-prefrontal cortical transmission in behaving mice. J Neurophysiol 82:2827–2832

    Article  CAS  PubMed  Google Scholar 

  • Herry C, Ciocchi S, Senn V, Demmou L, Müller C, Lüthi A (2008) Switching on and off fear by distinct neuronal circuits. Nature 454:600–606

    Article  CAS  PubMed  Google Scholar 

  • Herry C, Ferraguti F, Singewald N, Letzkus JJ, Ehrlich I, Lüthi A (2010) Neuronal circuits of fear extinction. Eur J Neurosci 31:599–612

    Article  PubMed  Google Scholar 

  • Hong I, Song B, Lee S, Kim J, Kim J, Choi S (2009) Extinction of cued fear memory involves a distinct form of depotentiation at cortical input synapses onto the lateral amygdala. Eur J Neurosci 30:2089–2099

    Article  PubMed  Google Scholar 

  • Huang YY, Kandel ER (1998) Postsynaptic induction and PKA-dependent expression of LTP in the lateral amygdala. Neuron 21:169–178

    Article  CAS  PubMed  Google Scholar 

  • Huang YY, Kandel ER (2007) Low-frequency stimulation induces a pathway-specific late phase of LTP in the amygdala that is mediated by PKA and dependent on protein synthesis. Learn Mem 14:497–503

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang YY, Martin KC, Kandel ER (2000) Both protein kinase A and mitogen-activated protein kinase are required in the amygdala for the macromolecular synthesis-dependent late phase of long-term potentiation. J Neurosci 20:6317–6325

    Article  CAS  PubMed  Google Scholar 

  • Huang CC, Chen CC, Liang YC, Hsu KS (2014) Long-term potentiation at excitatory synaptic inputs to the intercalated cell masses of the amygdala. Int J Neuropsychopharmacol 17:1233–1242

    Article  CAS  PubMed  Google Scholar 

  • Hübner C, Bosch D, Gall A, Lüthi A, Ehrlich I (2014) Ex vivo dissection of optogenetically activated mPFC and hippocampal inputs to neurons in the basolateral amygdala: implications for fear and emotional memory. Front Behav Neurosci 8:64

    PubMed  PubMed Central  Google Scholar 

  • Humeau Y, Shaban H, Bissière S, Lüthi A (2003) Presynaptic induction of heterosynaptic associative plasticity in the mammalian brain. Nature 426:841–845

    Article  CAS  PubMed  Google Scholar 

  • Humeau Y, Reisel D, Johnson AW, Borchardt T, Jensen V, Gebhardt C, Bosch V, Gass P, Bannerman DM, Good MA, Hvalby O, Sprengel R, Luthi A (2007) A pathway-specific function for different AMPA receptor subunits in amygdala long-term potentiation and fear conditioning. J Neurosci 27:10947–10956

    Article  CAS  PubMed  Google Scholar 

  • Ji G, Neugebauer V (2012) Modulation of medial prefrontal cortical activity using in vivo recordings and optogenetics. Mol Brain 5:36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen JP, Hamanaka H, Monfils MH, Behnia R, Deisseroth K, Blair HT, LeDoux JE (2010) Optical activation of lateral amygdala pyramidal cells instructs associative fear learning. Proc Natl Acad Sci U S A 107:12692–12697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johansen JP, Wolff SBE, Lüthi A, LeDoux JE (2012) Controlling the elements: an optogenetic approach to understanding the neural circuits of fear. Biol Psychiatry 71:1053–1060

    Article  PubMed  Google Scholar 

  • Jüngling K, Seidenbecher T, Sosulina L, Lesting J, Sangha S, Clark SD, Okamura N, Duangdao DM, Xu YL, Reinscheid RK, Pape HC (2008) Neuropeptide S-mediated control of fear expression and extinction: role of intercalated GABAergic neurons in the amygdala. Neuron 59:298–310

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim WB, Cho JH (2017) Encoding of discriminative fear memory by input-specific LTP in the amygdala. Neuron 95:1129–1146

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Richardson R (2007a) A developmental dissociation in reinstatement of an extinguished fear response in rats. Neurobiol Learn Mem 88:48–57

    Article  CAS  PubMed  Google Scholar 

  • Kim JH, Richardson R (2007b) A developmental dissociation of context and GABA effects on extinguished fear in rats. Behav Neurosci 121:131–139

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee S, Park H, Song B, Hong I, Geum D et al (2007a) Blockade of amygdala metabotropic glutamate receptor subtype 1 impairs fear extinction. Biochem Biophys Res Commun 355:188–193

    Article  CAS  PubMed  Google Scholar 

  • Kim J, Lee S, Park K, Hong I, Song B, Son G et al (2007b) Amygdala depotentiation and fear extinction. Proc Natl Acad Sci U S A 104:20955–20960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim J, An B, Kim J, Park S, Park S, Hong I et al (2015) mGluR2/3 in the lateral amygdala is required for fear extinction: cortical input synapses onto the lateral amygdala as a target site of the mGluR2/3 action. Neuropsychopharmacology 40:2916–2928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim HS, Cho HY, Augustine GJ, Han JH (2016) Selective control of fear expression by optogenetic manipulation of infralimbic cortex after extinction. Neuropsychopharmacology 41:1261–1273

    Article  PubMed  Google Scholar 

  • Kwon JT, Choi JS (2009) Cornering the fear engram: long-term synaptic changes in the lateral nucleus of the amygdala after fear conditioning. J Neurosci 29:9700–9703

    Article  CAS  PubMed  Google Scholar 

  • Kwon JT, Nakajima R, Kim HS, Jeong Y, Augustine GJ, Han JH (2014) Optogenetic activation of presynaptic inputs in lateral amygdala forms associative fear memory. Learn Mem 21:627–633

    Article  PubMed  PubMed Central  Google Scholar 

  • Lalumiere R (2014) Optogenetic dissection of amygdala functioning. Front Behav Neurosci 8:107

    Article  PubMed  PubMed Central  Google Scholar 

  • Langton JM, Kim JH, Nicholas J, Richardson R (2007) The effect of the NMDA receptor antagonist MK-801 on the acquisition and extinction of learned fear in the developing rat. Learn Mem 14:665–668

    Article  CAS  PubMed  Google Scholar 

  • Lanuza E, Nader K, Ledoux JE (2004) Unconditioned stimulus pathways to the amygdala: effects of posterior thalamic and cortical lesions on fear conditioning. Neuroscience 125:305–315

    Article  CAS  PubMed  Google Scholar 

  • Lanuza E, Moncho-Bogani J, Ledoux JE (2008) Unconditioned stimulus pathways to the amygdala: effects of lesions of the posterior intralaminar thalamus on foot-shock-induced c-Fos expression in the subdivisions of the lateral amygdala. Neuroscience 155:959–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ledgerwood L, Richardson R, Cranney J (2003) Effects of D-cycloserine on extinction of conditioned freezing. Behav Neurosci 117:341–349

    Article  CAS  PubMed  Google Scholar 

  • LeDoux JE (2000) Emotion circuits in the brain. Annu Rev Neurosci 23:155–184

    Article  CAS  PubMed  Google Scholar 

  • Li G, Nair SS, Quirk GJ (2009) A biologically realistic network model of acquisition and extinction of conditioned fear associations in lateral amygdala neurons. J Neurophysiol 101:1629–1646

    Article  PubMed  Google Scholar 

  • Li H, Penzo MA, Taniguchi H, Kopec CD, Huang ZJ, Li B (2013a) Experience-dependent modification of a central amygdala fear circuit. Nat Neurosci 16:332–339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Meloni EG, Carlezon WA, Milad MR, Pitman RK, Nader K et al (2013b) Learning and reconsolidation implicate different synaptic mechanisms. Proc Natl Acad Sci U S A 110:4798–4803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Likhtik E, Pelletier JG, Paz R, Paré D (2005) Prefrontal control of the amygdala. J Neurosci 25:7429–7437

    Article  CAS  PubMed  Google Scholar 

  • Likhtik E, Popa D, Apergis-Schoute J, Fidacaro GA, Paré D (2008) Amygdala intercalated neurons are required for expression of fear extinction. Nature 454:642–645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CH, Yeh SH, Lin CH, Lu KT, Leu TH, Chang WC, Gean PW (2001) A role for the PI-3 kinase signaling pathway in fear conditioning and synaptic plasticity in the amygdala. Neuron 31:841–851

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Lee CC, Gean PW (2003a) Involvement of a calcineurin cascade in amygdala depotentiation and quenching of fear memory. Mol Pharmacol 63:44–52

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Yeh SH, Leu TH, Chang WC, Wang ST, Gean PW (2003b) Identification of calcineurin as a key signal in the extinction of fear memory. J Neurosci 23:1574–1579

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Yeh SH, Lu HY, Gean PW (2003c) The similarities and diversities of signal pathways leading to consolidation of conditioning and consolidation of extinction of fear memory. J Neurosci 23:8310–8317

    Article  CAS  PubMed  Google Scholar 

  • Lin CH, Lee CC, Huang YC, Wang SJ, Gean PW (2005) Activation of group II metabotropic glutamate receptors induces depotentiation in amygdala slices and reduces fear-potentiated startle in rats. Learn Mem 12:130–137

    Article  PubMed  PubMed Central  Google Scholar 

  • Lu KT, Walker DL, Davis M (2001) Mitogen-activated protein kinase cascade in the basolateral nucleus of amygdala is involved in extinction of fear-potentiated startle. J Neurosci 21:RC162

    Article  CAS  PubMed  Google Scholar 

  • Luchkina NV, Bolshakov VY (2018) Diminishing fear: optogenetic approach toward understanding neural circuits of fear control. Pharmacol Biochem Behav 174:64–79

  • Mahanty NK, Sah P (1998) Calcium-permeable AMPA receptors mediate long-term potentiation in interneurons in the amygdala. Nature 394:683–687

    Article  CAS  PubMed  Google Scholar 

  • Mańko M, Geracitano R, Capogna M (2011) Functional connectivity of the main intercalated nucleus of the mouse amygdala. J Physiol 589(Pt 8):1911–1925

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mao SC, Hsiao YH, Gean PW (2006) Extinction training in conjunction with a partial agonist of the glycine site on the NMDA receptor erases memory trace. J Neurosci 26:8892–8899

    Article  CAS  PubMed  Google Scholar 

  • Marek R, Xu L, Sullivan RKP, Sah P (2018b) Excitatory connections between the prelimbic and infralimbic medial prefrontal cortex show a role for the prelimbic cortex in fear extinction. Nat Neurosci 21:654–658

    Article  CAS  PubMed  Google Scholar 

  • Marek R, Jin J, Goode TD, Giustino TF, Wang Q, Acca GM, Holehonnur R, Ploski JE, Fitzgerald PJ, Lynagh T, Lynch JW, Maren S, Sah P (2018a) Hippocampus-driven feed-forward inhibition of the prefrontal cortex mediates relapse of extinguished fear. Nat Neurosci 21:384–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maren S (2001) Neurobiology of Pavlovian fear conditioning. Annu Rev Neurosci 24:897–931

    Article  CAS  PubMed  Google Scholar 

  • Maren S, Chang C (2006) Recent fear is resistant to extinction. Proc Natl Acad Sci U S A 103:18020–18025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maren S, Quirk GJ (2004) Neuronal signalling of fear memory. Nat Rev Neurosci 5:844–852

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Morris RGM (2002) New life in an old idea: the synaptic plasticity and memory hypothesis revisited. Hippocampus 12:609–636

    Article  CAS  PubMed  Google Scholar 

  • Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711

    Article  CAS  PubMed  Google Scholar 

  • McKernan MG, Shinnick-Gallagher P (1997) Fear conditioning induces a lasting potentiation of synaptic currents in vitro. Nature 390:607–611

    Article  CAS  PubMed  Google Scholar 

  • Milad MR, Quirk GJ (2002) Neurons in medial prefrontal cortex signal memory for fear extinction. Nature 420:70–74

    Article  CAS  PubMed  Google Scholar 

  • Milad MR, Vidal-Gonzalez I, Quirk GJ (2004) Electrical stimulation of medial prefrontal cortex reduces conditioned fear in a temporally specific manner. Behav Neurosci 118:389–394

    Article  CAS  PubMed  Google Scholar 

  • Miserendino MJ, Sananes CB, Melia KR, Davis M (1990) Blocking of acquisition but not expression of conditioned fear-potentiated startle by NMDA antagonists in the amygdala. Nature 345:716–718

    Article  CAS  PubMed  Google Scholar 

  • Monfils MH, Cowansage KK, Klann E, LeDoux JE (2009) Extinction-reconsolidation boundaries: key to persistent attenuation of fear memories. Science 324:951–955

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myers KM, Davis M (2007) Mechanisms of fear extinction. Mol Psychiatry 12:120–150

    Article  CAS  PubMed  Google Scholar 

  • Myers KM, Ressler KJ, Davis M (2006) Different mechanisms of fear extinction dependent on length of time since fear acquisition. Learn Mem 13:216–223

    Article  PubMed  PubMed Central  Google Scholar 

  • Nabavi S, Fox R, Proulx CD, Lin JY, Tsien RY, Malinow R (2014) Engineering a memory with LTD and LTP. Nature 511:348–352

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nedelescu H, Kelso CM, Lázaro-Muñoz G, Purpura M, Cain CK, Ledoux JE, Aoki C (2010) Endogenous GluR1-containing AMPA receptors translocate to asymmetric synapses in the lateral amygdala during the early phase of fear memory formation: an electron microscopic immunocytochemical study. J Comp Neurol 518(23):4723–4739

  • Nonaka A, Toyoda T, Miura Y, Hitora-Imamura N, Naka M, Eguchi M, Yamaguchi S, Ikegaya Y, Matsuki N, Nomura H (2014) Synaptic plasticity associated with a memory engram in the basolateral amygdala. J Neurosci 34:9305–9309

    Article  PubMed  CAS  Google Scholar 

  • Orsini CA, Maren S (2012) Neural and cellular mechanisms of fear and extinction memory formation. Neurosci Biobehav Rev 36:1773–1802

    Article  PubMed  PubMed Central  Google Scholar 

  • Pape HC, Pare D (2010) Plastic synaptic networks of the amygdala for the acquisition, expression, and extinction of conditioned fear. Physiol Rev 90:419–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paré D, Quirk GJ, Ledoux JE (2004) New vistas on amygdala networks in conditioned fear. J Neurophysiol 92:1–9

    Article  PubMed  Google Scholar 

  • Pitkänen A, Savander V, LeDoux JE (1997) Organization of intra-amygdaloid circuitries in the rat: an emerging framework for understanding functions of the amygdala. Trends Neurosci 20:517–523

    Article  PubMed  Google Scholar 

  • Plendl W, Wotjak CT (2010) Dissociation of within- and between-session extinction of conditioned fear. J Neurosci 30:4990–4998

    Article  CAS  PubMed  Google Scholar 

  • Quirk GJ (2002) Memory for extinction of conditioned fear is long-lasting and persists following spontaneous recovery. Learn Mem 9:402–407

    Article  PubMed  PubMed Central  Google Scholar 

  • Quirk GJ, Repa C, LeDoux JE (1995) Fear conditioning enhances short-latency auditory responses of lateral amygdala neurons: parallel recordings in the freely behaving rat. Neuron 15:1029–1039

    Article  CAS  PubMed  Google Scholar 

  • Quirk GJ, Russo GK, Barron JL, Lebron K (2000) The role of ventromedial prefrontal cortex in the recovery of extinguished fear. J Neurosci 20:6225–6231

    Article  CAS  PubMed  Google Scholar 

  • Quirk GJ, Garcia R, González-Lima F (2006) Prefrontal mechanisms in extinction of conditioned fear. Biol Psychiatry 60:337–343

    Article  PubMed  Google Scholar 

  • Ramirez S, Liu X, Lin PA, Suh J, Pignatelli M, Redondo RL, Ryan TJ, Tonegawa S (2013) Creating a false memory in the hippocampus. Science 341:387–391

    Article  CAS  PubMed  Google Scholar 

  • Repa JC, Muller J, Apergis J, Desrochers TM, Zhou Y, LeDoux JE (2001) Two different lateral amygdala cell populations contribute to the initiation and storage of memory. Nat Neurosci 4:724–731

    Article  CAS  PubMed  Google Scholar 

  • Rescorla RA (2004) Spontaneous recovery varies inversely with the training-extinction interval. Learn Behav 32:401–408

    Article  PubMed  Google Scholar 

  • Riccio A, Li Y, Moon J, Kim KS, Smith KS, Rudolph U, Gapon S, Yao GL, Tsvetkov E, Rodig SJ, van't Veer A, Meloni EG, Carlezon WA Jr, Bolshakov VY, Clapham DE (2009) Essential role for TRPC5 in amygdala function and fear-related behavior. Cell 137:761–772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riccio A, Li Y, Tsvetkov E, Gapon S, Yao GL, Smith KS, Engin E, Rudolph U, Bolshakov VY, Clapham DE (2014) Decreased anxiety-like behavior and Gαq/11-dependent responses in the amygdala of mice lacking TRPC4 channels. J Neurosci 34:3653–3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Riga D, Matos MR, Glas A, Smit AB, Spijker S, Van den Oever MC (2014) Optogenetic dissection of medial prefrontal cortex circuitry. Front Syst Neurosci 8:230

    Article  PubMed  PubMed Central  Google Scholar 

  • Rodrigues SM, Schafe GE, LeDoux JE (2001) Intra-amygdala blockade of the NR2B subunit of the NMDA receptor disrupts the acquisition but not the expression of fear conditioning. J Neurosci 21:6889–6896

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues SM, Bauer EP, Farb CR, Schafe GE, LeDoux JE (2002) The group I metabotropic glutamate receptor mGluR5 is required for fear memory formation and long-term potentiation in the lateral amygdala. J Neurosci 22:5219–5229

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues SM, Farb CR, Bauer EP, LeDoux JE, Schafe GE (2004) Pavlovian fear conditioning regulates Thr286 autophosphorylation of Ca2+/calmodulin-dependent protein kinase II at lateral amygdala synapses. J Neurosci 24:3281–3288

    Article  CAS  PubMed  Google Scholar 

  • Rogan MT, Stäubli UV, LeDoux JE (1997) Fear conditioning induces associative long-term potentiation in the amygdala. Nature 390:604–607

    Article  CAS  PubMed  Google Scholar 

  • Rossetti T, Banerjee S, Kim C, Leubner M, Lamar C, Gupta P et al (2017) Memory erasure experiments indicate a critical role of CaMKII in memory storage. Neuron 96:207–216.e2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royer S, Paré D (2002) Bidirectional synaptic plasticity in intercalated amygdala neurons and the extinction of conditioned fear responses. Neuroscience 115:455–462

    Article  CAS  PubMed  Google Scholar 

  • Royer S, Martina M, Paré D (1999) An inhibitory interface gates impulse traffic between the input and output stations of the amygdala. J Neurosci 19:10575–10583

    Article  CAS  PubMed  Google Scholar 

  • Royer S, Martina M, Paré D (2000) Polarized synaptic interactions between intercalated neurons of the amygdala. J Neurophysiol 83:3509–3518

    Article  CAS  PubMed  Google Scholar 

  • Rumpel S, LeDoux J, Zador A, Malinow R (2005) Postsynaptic receptor trafficking underlying a form of associative learning. Science 308:83–88

    Article  CAS  PubMed  Google Scholar 

  • Santini E, Ge H, Ren K, Peña de Ortiz S, Quirk GJ (2004) Consolidation of fear extinction requires protein synthesis in the medial prefrontal cortex. J Neurosci 24:5704–5710

    Article  CAS  PubMed  Google Scholar 

  • Santini E, Quirk GJ, Porter JT (2008) Fear conditioning and extinction differentially modify the intrinsic excitability of infralimbic neurons. J Neurosci 28:4028–4036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schafe GE, LeDoux JE (2000) Memory consolidation of auditory Pavlovian fear conditioning requires protein synthesis and protein kinase A in the amygdala. J Neurosci 20:RC96

    Article  CAS  PubMed  Google Scholar 

  • Schiller D, Cain CK, Curley NG, Schwartz JS, Stern SA, Ledoux JE et al (2008) Evidence for recovery of fear following immediate extinction in rats and humans. Learn Mem 15:394–402

    Article  PubMed  PubMed Central  Google Scholar 

  • Senn V, Wolff SBE, Herry C, Grenier F, Ehrlich I, Gründemann J, Fadok JP, Müller C, Letzkus JJ, Lüthi A (2014) Long-range connectivity defines behavioral specificity of amygdala neurons. Neuron 81:428–437

    Article  CAS  PubMed  Google Scholar 

  • Shen K, Meyer T (1999) Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. Science 284:162–166

    Article  CAS  PubMed  Google Scholar 

  • Shi CJ, Cassell MD (1998) Cascade projections from somatosensory cortex to the rat basolateral amygdala via the parietal insular cortex. J Comp Neurol 399:469–491

    Article  CAS  PubMed  Google Scholar 

  • Shi C, Davis M (1999) Pain pathways involved in fear conditioning measured with fear-potentiated startle: lesion studies. J Neurosci 19:420–430

    Article  CAS  PubMed  Google Scholar 

  • Shin RM, Tsvetkov E, Bolshakov VY (2006) Spatiotemporal asymmetry of associative synaptic plasticity in fear conditioning pathways. Neuron 52:883–896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shumyatsky GP, Tsvetkov E, Malleret G, Vronskaya S, Hatton M, Hampton L, Battey JF, Dulac C, Kandel ER, Bolshakov VY (2002) Identification of a signaling network in lateral nucleus of amygdala important for inhibiting memory specifically related to learned fear. Cell 111:905–918

    Article  CAS  PubMed  Google Scholar 

  • Shumyatsky GP, Malleret G, Shin RM, Takizawa S, Tully K, Tsvetkov E, Zakharenko SS, Joseph J, Vronskaya S, Yin DQ, Schubart UK, Kandel ER, Bolshakov VY (2005) Stathmin, a gene enriched in the amygdala, controls both learned and innate fear. Cell 123:697–709

    Article  CAS  PubMed  Google Scholar 

  • Sierra-Mercado D, Padilla-Coreano N, Quirk GJ (2011) Dissociable roles of prelimbic and infralimbic cortices, ventral hippocampus, and basolateral amygdala in the expression and extinction of conditioned fear. Neuropsychopharmacology 36:529–538

    Article  PubMed  Google Scholar 

  • Singewald N, Schmuckermair C, Whittle N, Holmes A, Ressler KJ (2015) Pharmacology of cognitive enhancers for exposure-based therapy of fear, anxiety and trauma-related disorders. Pharmacol Ther 149:150–190

    Article  CAS  PubMed  Google Scholar 

  • Sotres-Bayon F, Bush DEA, LeDoux JE (2007) Acquisition of fear extinction requires activation of NR2B-containing NMDA receptors in the lateral amygdala. Neuropsychopharmacology 32:1929–1940

    Article  CAS  PubMed  Google Scholar 

  • Sotres-Bayon F, Diaz-Mataix L, Bush DEA, LeDoux JE (2009) Dissociable roles for the ventromedial prefrontal cortex and amygdala in fear extinction: NR2B contribution. Cereb Cortex 19:474–482

    Article  PubMed  Google Scholar 

  • Strobel C, Marek R, Gooch HM, Sullivan RKP, Sah P (2015) Prefrontal and auditory input to intercalated neurons of the amygdala. Cell Rep 10:1435–1442

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi T, Duszkiewicz AJ, Morris RGM (2014) The synaptic plasticity and memory hypothesis: encoding, storage and persistence. Philos Trans R Soc Lond Ser B Biol Sci 369:20130288

    Article  CAS  Google Scholar 

  • Tsvetkov E, Carlezon WA, Benes FM, Kandel ER, Bolshakov VY (2002) Fear conditioning occludes LTP-induced presynaptic enhancement of synaptic transmission in the cortical pathway to the lateral amygdala. Neuron 34:289–300

    Article  CAS  PubMed  Google Scholar 

  • Tully K, Li Y, Tsvetkov E, Bolshakov VY (2007) Norepinephrine enables the induction of associative long-term potentiation at thalamo-amygdala synapses. Proc Natl Acad Sci U S A 104:14146–14150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vidal-Gonzalez I, Vidal-Gonzalez B, Rauch SL, Quirk GJ (2006) Microstimulation reveals opposing influences of prelimbic and infralimbic cortex on the expression of conditioned fear. Learn Mem 13:728–733

    Article  PubMed  PubMed Central  Google Scholar 

  • Walker DL, Ressler KJ, Lu KT, Davis M (2002) Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of D-cycloserine as assessed with fear-potentiated startle in rats. J Neurosci 22:2343–2351

    Article  CAS  PubMed  Google Scholar 

  • Weinberger NM (2011) The medial geniculate, not the amygdala, as the root of auditory fear conditioning. Hear Res 274:61–74

    Article  PubMed  Google Scholar 

  • Weisskopf MG, Bauer EP, LeDoux JE (1999) L-type voltage-gated calcium channels mediate NMDA-independent associative long-term potentiation at thalamic input synapses to the amygdala. J Neurosci 19:10512–10519

    Article  CAS  PubMed  Google Scholar 

  • Whitlock JR, Heynen AJ, Shuler MG, Bear MF (2006) Learning induces long-term potentiation in the hippocampus. Science 313:1093–1097

    Article  CAS  PubMed  Google Scholar 

  • Wilensky AE, Schafe GE, LeDoux JE (2000) The amygdala modulates memory consolidation of fear-motivated inhibitory avoidance learning but not classical fear conditioning. J Neurosci 20:7059–7066

    Article  CAS  PubMed  Google Scholar 

  • Wilensky AE, Schafe GE, Kristensen MP, LeDoux JE (2006) Rethinking the fear circuit: the central nucleus of the amygdala is required for the acquisition, consolidation, and expression of Pavlovian fear conditioning. J Neurosci 26:12387–12396

    Article  CAS  PubMed  Google Scholar 

  • Woods AM, Bouton ME (2008) Immediate extinction causes a less durable loss of performance than delayed extinction following either fear or appetitive conditioning. Learn Mem 15:909–920

    Article  PubMed  PubMed Central  Google Scholar 

  • Yeh SH, Mao SC, Lin HC, Gean PW (2006) Synaptic expression of glutamate receptor after encoding of fear memory in the rat amygdala. Mol Pharmacol 69:299–308

  • Yizhar O, Fenno LE, Davidson TJ, Mogri M, Deisseroth K (2011) Optogenetics in neural systems. Neuron 71:9–34

    Article  CAS  PubMed  Google Scholar 

  • Yu K, Ahrens S, Zhang X, Schiff H, Ramakrishnan C, Fenno L, Deisseroth K, Zhao F, Luo MH, Gong L, He M, Zhou P, Paninski L, Li B (2017) The central amygdala controls learning in the lateral amygdala. Nat Neurosci 20:1680–1685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Vernon Clarke and members of the laboratory for help and constructive discussions. This work was supported by grants R01MH108665 and R01MH105851 from the NIMH (to V.Y.B.) and The Phyllis & Jerome Lyle Rappaport Foundation (to N.V.L.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Natalia V. Luchkina or Vadim Y. Bolshakov.

Ethics declarations

Conflict of interest statement

On behalf of all authors, the corresponding author (Dr. Bolshakov) states that there is no conflict of interest.

Additional information

This article belongs to a Special Issue on Psychopharmacology of Extinction

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luchkina, N.V., Bolshakov, V.Y. Mechanisms of fear learning and extinction: synaptic plasticity–fear memory connection. Psychopharmacology 236, 163–182 (2019). https://doi.org/10.1007/s00213-018-5104-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-018-5104-4

Keywords