Skip to main content
Log in

Molecular mechanisms of cardiomyopathy phenotypes associated with myosin light chain mutations

  • Review Article
  • Published:
Journal of Muscle Research and Cell Motility Aims and scope Submit manuscript

Abstract

We discuss here the potential mechanisms of action associated with hypertrophic (HCM) or dilated (DCM) cardiomyopathy causing mutations in the myosin regulatory (RLC) and essential (ELC) light chains. Specifically, we focus on four HCM mutations: RLC-A13T, RLC-K104E, ELC-A57G and ELC-M173V, and one DCM RLC-D94A mutation shown by population studies to cause different cardiomyopathy phenotypes in humans. Our studies indicate that RLC and ELC mutations lead to heart disease through different mechanisms with RLC mutations triggering alterations of the secondary structure of the RLC which further affect the structure and function of the lever arm domain and impose changes in the cross bridge cycling rates and myosin force generation ability. The ELC mutations exert their detrimental effects through changes in the interaction of the N-terminus of ELC with actin altering the cross talk between the thick and thin filaments and ultimately resulting in an altered force-pCa relationship. We also discuss the effect of mutations on myosin light chain phosphorylation. Exogenous myosin light chain phosphorylation and/or pseudo-phosphorylation were explored as potential rescue tools to treat hypertrophy-related cardiac phenotypes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Abbreviations

A13T:

Alanine-to-threonine mutation in myosin RLC

A57G:

Alanine-to-glycine mutation in myosin ELC

ANP:

Atrial natriuretic peptide

BNP:

Brain natriuretic peptide

CaM:

Calmodulin

CD:

Circular dichroism

CO:

Cardiac output

D94A:

Aspartic acid-to-alanine mutation in myosin RLC

D166V:

Aspartic acid-to-valine mutation in myosin RLC

DCM:

Dilated cardiomyopathy

E/A ratio:

Doppler transmitral blood velocities, early (E)/late (A) diastolic

ECG:

Echocardiography

EF:

Ejection fraction

ELC:

Essential light chain of myosin (MYL3 gene)

HCM:

Hypertrophic cardiomyopathy

IFS:

Interfilament lattice spacing

IVS:

Inter-ventricular septum

H&E:

Hematoxylin and eosin

HF:

Heart failure

K104E:

Lysine-to-glutamic acid mutation in myosin RLC

LV:

Left ventricle

M173V:

Methionine-to-valine mutation in myosin ELC

MHC:

Myosin heavy chain

MLC:

Myosin light chain

MLCK:

Myosin light chain kinase

MyBP-C:

Myosin binding protein-C

NTg:

Non-transgenic

PV:

Pressure volume

R58Q:

Arginine-to-glutamine mutation in myosin RLC

RLC:

Regulatory light chain of myosin (MYL2 gene)

S15D:

Serine-to-aspartic acid mutation to mimic phosphorylation

SCD:

Sudden cardiac death

SR:

Sarcoplasmic reticulum

SW:

Stroke work

SV:

Stroke volume

Tg:

Transgenic

Tm:

Tropomyosin

Tn:

Troponin

WT:

Wild-type

References

  • Abraham TP et al (2009) Diastolic dysfunction in familial hypertrophic cardiomyopathy transgenic model mice. Cardiovasc Res 82:84–92. doi:10.1093/cvr/cvp016

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Alcalai R, Seidman JG, Seidman CE (2008) Genetic basis of hypertrophic cardiomyopathy: from bench to the clinics. J Cardiovasc Electrophysiol 19:104–110

    PubMed  Google Scholar 

  • Alvarez-Acosta L et al (2014) Regulatory light chain (MYL2) mutations in familial hypertrophic cardiomyopathy. J Cardiovasc Dis 2:82–90

    Google Scholar 

  • Andersen PS et al (2001) Myosin light chain mutations in familial hypertrophic cardiomyopathy: phenotypic presentation and frequency in Danish and South African populations. J Med Genet 38:e43. doi:10.1136/jmg.38.12.e43

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Andersen PS et al (2009) Diagnostic yield, interpretation, and clinical utility of mutation screening of sarcomere encoding genes in Danish hypertrophic cardiomyopathy patients and relatives. Hum Mutat 30:363–370. doi:10.1002/humu.20862

    Article  PubMed  CAS  Google Scholar 

  • Arrell DK, Neverova I, Fraser H, Marban E, Van Eyk JE (2001) Proteomic analysis of pharmacologically preconditioned cardiomyocytes reveals novel phosphorylation of myosin light chain 1. Circ Res 89:480–487

    Article  PubMed  CAS  Google Scholar 

  • Aydt EM, Wolff G, Morano I (2007) Molecular modeling of the myosin-S1(A1) isoform. J Struct Biol 159:158–163

    Article  PubMed  CAS  Google Scholar 

  • Chang AN et al (2015) Constitutive phosphorylation of cardiac myosin regulatory light chain in vivo. J Biol Chem. doi:10.1074/jbc.M115.642165

    Google Scholar 

  • Dellefave L, McNally EM (2011) The genetics of dilated cardiomyopathy. Curr Opin Cardiol 25:198–204. doi:10.1097/HCO.0b013e328337ba52

    Article  Google Scholar 

  • Ding P, Huang J, Battiprolu PK, Hill JA, Kamm KE, Stull JT (2010) Cardiac myosin light chain kinase is necessary for myosin regulatory light chain phosphorylation and cardiac performance in vivo. J Biol Chem 285:40819–40829. doi:10.1074/jbc.M110.160499

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Fewell JG, Osinska H, Klevitsky R, Ng W, Sfyris G, Bahrehmand F, Robbins J (1997) A treadmill exercise regimen for identifying cardiovascular phenotypes in transgenic mice. Am J Physiol 273:H1595–H1605

    PubMed  CAS  Google Scholar 

  • Garcia-Pavia P et al (2011) Genetic basis of end-stage hypertrophic cardiomyopathy. Eur J Heart Fail 13:1193–1201. doi:10.1093/eurjhf/hfr110

    Article  PubMed  CAS  Google Scholar 

  • Geeves MA (2002) Molecular motors: stretching the lever-arm theory. Nature 415:129–131. doi:10.1038/415129a

    Article  PubMed  CAS  Google Scholar 

  • Gomes AV, Venkatraman G, Potter JD (2005) The miscommunicative cardiac cell: when good proteins go bad. Ann N Y Acad Sci 1047:30–37. doi:10.47/1/30

    Article  PubMed  CAS  Google Scholar 

  • Hernandez OM, Jones M, Guzman G, Szczesna-Cordary D (2007) Myosin essential light chain in health and disease. Am J Physiol Heart Circ Physiol 292:H1643–H1654. doi:10.1152/ajpheart.00931.2006

    Article  PubMed  CAS  Google Scholar 

  • Hershberger RE, Hedges DJ, Morales A (2013) Dilated cardiomyopathy: the complexity of a diverse genetic architecture. Nat Rev Cardiol 10:531–547. doi:10.1038/nrcardio.2013.105

    Article  PubMed  CAS  Google Scholar 

  • Hidalgo C, Saripalli C, Granzier HL (2014) Effect of exercise training on post-translational and post-transcriptional regulation of titin stiffness in striated muscle of wild type and IG KO mice. Arch Biochem Biophys 552–553:100–107. doi:10.1016/j.abb.2014.02.010

    Article  PubMed  CAS  Google Scholar 

  • Hougs L et al (2005) One third of Danish hypertrophic cardiomyopathy patients have mutations in MYH7 rod region. Eur J Hum Genet 13:161–165

    Article  PubMed  CAS  Google Scholar 

  • Huang W (2015) Molecular Mechanisms of Myosin Light Chain Mutation-Induced Cardiomyopathies Open Access Dissertations Paper 1373

  • Huang J, Shelton JM, Richardson JA, Kamm KE, Stull JT (2008) Myosin regulatory light chain phosphorylation attenuates cardiac hypertrophy. J Biol Chem 283:19748–19756. doi:10.1074/jbc.M802605200

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang W et al (2014) Hypertrophic cardiomyopathy associated Lys104Glu mutation in the myosin regulatory light chain causes diastolic disturbance in mice. J Mol Cell Cardiol 74:318–329. doi:10.1016/j.yjmcc.2014.06.0111

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Huang W et al (2015) Novel familial dilated cardiomyopathy mutation in MYL2 affects the structure and function of myosin regulatory light chain. FEBS J 282:2379–2393. doi:10.1111/febs.13286

    Article  PubMed  CAS  Google Scholar 

  • Kamisago M et al (2000) Mutations in sarcomere protein genes as a cause of dilated cardiomyopathy. N Engl J Med 343:1688–1696. doi:10.1056/nejm200012073432304

    Article  PubMed  CAS  Google Scholar 

  • Kamm KE, Stull JT (2011) Signaling to myosin regulatory light chain in sarcomeres. J Biol Chem 286:9941–9947. doi:10.1074/jbc.R110.198697

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kaski JP et al (2009) Prevalence of sarcomere protein gene mutations in preadolescent children with hypertrophic cardiomyopathy. Circ Cardiovasc Genet 2:436–441

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak K, Xu Y, Jones M, Guzman G, Hernandez OM, Kerrick WGL, Szczesna-Cordary D (2009) The role of the N-terminus of the myosin essential light chain in cardiac muscle contraction. J Mol Biol 387:706–725. doi:10.1016/j.jmb.2009.02.006

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kazmierczak K, Muthu P, Huang W, Jones M, Wang Y, Szczesna-Cordary D (2012) Myosin regulatory light chain mutation found in hypertrophic cardiomyopathy patients increases isometric force production in transgenic mice. Biochem J 442:95–103. doi:10.1042/BJ20111145

    Article  PubMed  CAS  Google Scholar 

  • Kazmierczak K et al (2013) Discrete effects of A57G-myosin essential light chain mutation associated with familial hypertrophic cardiomyopathy. Am J Physiol Heart Circ Physiol 305:H575–H589. doi:10.1152/ajpheart.00107.2013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kazmierczak K, Yuan C-C, Liang J, Huang W, Rojas AI, Szczesna-Cordary D (2014) Remodeling of the heart in hypertrophy in animal models with myosin essential light chain mutations. Front Physiol 5:353. doi:10.3389/fphys.2014.00353

    Article  PubMed Central  PubMed  Google Scholar 

  • Kerrick WGL, Kazmierczak K, Xu Y, Wang Y, Szczesna-Cordary D (2009) Malignant familial hypertrophic cardiomyopathy D166V mutation in the ventricular myosin regulatory light chain causes profound effects in skinned and intact papillary muscle fibers from transgenic. FASEB J 23:855–865. doi:10.1096/fj.08-118182

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Kuster DW et al (2014) Release kinetics of circulating cardiac myosin binding protein-C following cardiac injury. Am J Physiol Heart Circ Physiol 306:H547–H556. doi:10.1152/ajpheart.00846.2013

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lee W et al (2001) Different expressivity of a ventricular essential myosin light chain gene Ala57Gly mutation in familial hypertrophic cardiomyopathy. Am Heart J 141:184–189

    Article  PubMed  CAS  Google Scholar 

  • Lee K, Harris SP, Sadayappan S, Craig R (2015) Orientation of myosin binding protein c in the cardiac muscle sarcomere determined by domain-specific immuno-EM. J Mol Biol 427:274–286. doi:10.1016/j.jmb.2014.10.023

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lossie J et al (2014) Molecular mechanism regulating myosin and cardiac functions by ELC. Biochem Biophys Res Commun 450:464–469. doi:10.1016/j.bbrc.2014.05.142

    Article  PubMed  CAS  Google Scholar 

  • Marian AJ, Roberts R (1998) Molecular genetic basis of hypertrophic cardiomyopathy: genetic markers for sudden cardiac death. J Cardiovasc Electrophysiol 9:88–99

    Article  PubMed  CAS  Google Scholar 

  • Maron BJ, Bonow RO, Seshagiri TNR, Roberts WC, Epstein SE (1982) Hypertrophic cardiomyopathy with ventricular septal hypertrophy localized to the apical region of the left ventricle (apical hypertrophic cardiomyopathy). Am J Cardiol 49:1838–1848

    Article  PubMed  CAS  Google Scholar 

  • Maron BJ, Gardin JM, Flack JM, Gidding SS, Kurosaki TT, Bild DE (1995) Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA Study. Coronary Artery Risk Development in (Young) Adults. Circulation 92:785–789

    Article  PubMed  CAS  Google Scholar 

  • Marston SB (2011) How do mutations in contractile proteins cause the primary familial cardiomyopathies? J Cardiovasc Transl Res 4:245–255. doi:10.1007/s12265-011-9266-2

    Article  PubMed  Google Scholar 

  • Meder B et al (2009) A single serine in the carboxyl terminus of cardiac essential myosin light chain-1 controls cardiomyocyte contractility in vivo. Circ Res 104:650–659. doi:10.1161/circresaha.108.186676

    Article  PubMed  CAS  Google Scholar 

  • Millat G et al (2011) Clinical and mutational spectrum in a cohort of 105 unrelated patients with dilated cardiomyopathy. Eur J Med Genet 54:e570–e575

    Article  PubMed  Google Scholar 

  • Morano I (1999) Tuning the human heart molecular motors by myosin light chains. J Mol Med 77:544–555. doi:10.1007/s001099900031

    Article  PubMed  CAS  Google Scholar 

  • Morita H et al (2008) Shared genetic causes of cardiac hypertrophy in children and adults. N Engl J Med 358:1899–1908

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Muthu P et al (2011) Structural and functional aspects of the myosin essential light chain in cardiac muscle contraction FASEB journal : official publication of the Federation of American Societies for. Exp Biol 25:4394–4405. doi:10.1096/fj.11-191973

    CAS  Google Scholar 

  • Muthu P, Huang W, Kazmierczak K, Szczesna-Cordary D (2012) Functional consequences of mutations in the myosin regulatory light chain associated with hypertrophic cardiomyopathy. In: Veselka J (ed) Cardiomyopathies—from basic research to clinical management, chap. 17. InTech, Croatia, pp 383–408. doi:10.5772/29012

    Google Scholar 

  • Olivotto I et al (2008) Myofilament protein gene mutation screening and outcome of patients with hypertrophic cardiomyopathy. Mayo Clin Proc 83:630–638

    Article  PubMed  CAS  Google Scholar 

  • Olson TM, Karst ML, Whitby FG, Driscoll DJ (2002) Myosin light chain mutation causes autosomal recessive cardiomyopathy with mid-cavitary hypertrophy and restrictive physiology. Circulation 105:2337–2340

    Article  PubMed  CAS  Google Scholar 

  • Perriard JC, Hirschy A, Ehler E (2003) Dilated cardiomyopathy: a disease of the intercalated disc? Trends Cardiovasc Med 13:30–38

    Article  PubMed  Google Scholar 

  • Petzhold D, Lossie J, Keller S, Werner S, Haase H, Morano I (2011) Human essential myosin light chain isoforms revealed distinct myosin binding, sarcomeric sorting, and inotropic activity. Cardiovasc Res 90:513–520. doi:10.1093/cvr/cvr026

  • Petzhold D, Simsek B, Meißner R, Mahmoodzadeh S, Morano I (2014) Distinct interactions between actin and essential myosin light chain isoforms. Biochem Biophys Res Commun 449:284–288. doi:10.1016/j.bbrc.2014.05.040

    Article  PubMed  CAS  Google Scholar 

  • Piran S, Liu P, Morales A, Hershberger RE (2012) Where genome meets phenome: rationale for integrating genetic and protein biomarkers in the diagnosis and management of dilated cardiomyopathy and heart failure. J Am Coll Cardiol 60:283–289

    Article  PubMed  CAS  Google Scholar 

  • Poetter K et al (1996) Mutations in either the essential or regulatory light chains of myosin are associated with a rare myopathy in human heart and skeletal muscle. Nat Genet 13:63–69

    Article  PubMed  CAS  Google Scholar 

  • Rayment I (1996) The structural basis of the myosin ATPase activity. J Biol Chem 271:15850–15853. doi:10.1074/jbc.271.27.15850

    Article  PubMed  CAS  Google Scholar 

  • Rayment I et al (1993) Three-dimensional structure of myosin subfragment-1: a molecular motor. Science 261:50–58. doi:10.1126/science.8316857

    Article  PubMed  CAS  Google Scholar 

  • Richard P et al. (2003) Hypertrophic cardiomyopathy: Distribution of disease genes, spectrum of mutations, and implications for a molecular diagnosis strategy. Circulation 107:2227–2232, and erratum (2004) 2109(2225):3258

  • Robinson JM, Wang Y, Kerrick WG, Kawai R, Cheung HC (2002) Activation of striated muscle: nearest-neighbor regulatory-unit and cross-bridge influence on myofilament kinetics. J Mol Biol 322:1065–1088

    Article  PubMed  CAS  Google Scholar 

  • Sadayappan S, Gulick J, Klevitsky R, Lorenz JN, Sargent M, Molkentin JD, Robbins J (2009) Cardiac myosin binding protein-C phosphorylation in a {beta}-myosin heavy chain background. Circulation 119:1253–1262

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Santos S et al (2012) High Resolution Melting: improvements in the genetic diagnosis of Hypertrophic Cardiomyopathy in a Portuguese cohort. BMC Med Gen 13:17. doi:10.1186/1471-2350-13-17

    Article  CAS  Google Scholar 

  • Schaub MC, Hefti MA, Zuellig RA, Morano I (1998) Modulation of contractility in human cardiac hypertrophy by myosin essential light chain isoforms. Cardiovasc Res 37:381–404

    Article  PubMed  CAS  Google Scholar 

  • Schonberger J, Seidman CE (2001) Many roads lead to a broken heart: the genetics of dilated cardiomyopathy. Am J Hum Genet 69:249–260

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scruggs SB, Solaro RJ (2011) The significance of regulatory light chain phosphorylation in cardiac physiology. Arch Biochem Biophys 510:129–134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Scruggs SB et al (2009) Ablation of ventricular myosin regulatory light chain phosphorylation in mice causes cardiac dysfunction in situ and affects neighboring myofilament protein phosphorylation. J Biol Chem 284:5097–5106

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sheikh F et al (2012) Mouse and computational models link Mlc2v dephosphorylation to altered myosin kinetics in early cardiac disease. J Clin Invest 122:1209–1221. doi:10.1172/JCI61134

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Sutoh K (1982) An actin-binding site on the 20 K fragment of myosin subfragment 1. Biochemistry 21:4800–4804

    Article  PubMed  CAS  Google Scholar 

  • Sweeney HL, Bowman BF, Stull JT (1993) Myosin light chain phosphorylation in vertebrate striated muscle: regulation and function. Am J Physiol 264:C1085–C1095

    PubMed  CAS  Google Scholar 

  • Szczesna D (2003) Regulatory light chains of striated muscle myosin. Structure, function and malfunction. Curr Drug Targets Cardiovasc Haematol Disord 3:187–197. doi:10.2174/1568006033481474

    Article  PubMed  CAS  Google Scholar 

  • Szczesna D et al (2001) Familial hypertrophic cardiomyopathy mutations in the regulatory light chains of myosin affect their structure, Ca2+ binding, and phosphorylation. J Biol Chem 276:7086–7092. doi:10.1074/jbc.M009823200

    Article  PubMed  CAS  Google Scholar 

  • Szczesna-Cordary D, Guzman G, Ng SS, Zhao J (2004) Familial hypertrophic cardiomyopathy-linked alterations in Ca2+ binding of human cardiac myosin regulatory light chain affect cardiac muscle contraction. J Biol Chem 279:3535–3542

    Article  PubMed  CAS  Google Scholar 

  • Szczesna-Cordary D et al (2007) Myosin regulatory light chain E22 K mutation results in decreased cardiac intracellular calcium and force transients FASEB journal : official publication of the Federation of American Societies for. Exp Biol 21:3974–3985. doi:10.1096/fj.07-8630com

    CAS  Google Scholar 

  • Szczesna-Cordary D, Morimoto S, Gomes AV, Moore JR (2012) Cardiomyopathies: classification, clinical characterization, and functional phenotypes. Biochemistry research international 2012:870942. doi:10.1155/2012/870942

    Article  PubMed Central  PubMed  Google Scholar 

  • Timson DJ (2003) Fine tuning the myosin motor: the role of the essential light chain in striated muscle myosin. Biochimie 85:639–645

    Article  PubMed  CAS  Google Scholar 

  • Trayer HR, Trayer IP (1985) Differential binding of rabbit fast muscle myosin light chain isoenzymes to regulated actin. FEBS Lett 180:170–173

    Article  PubMed  CAS  Google Scholar 

  • van der Velden J et al (2003a) The effect of myosin light chain 2 dephosphorylation on Ca2+-sensitivity of force is enhanced in failing human hearts. Cardiovasc Res 57:505–514. doi:10.1016/s0008-6363(02)00662-4

    Article  PubMed  Google Scholar 

  • van der Velden J et al (2003b) Increased Ca2+-sensitivity of the contractile apparatus in end-stage human heart failure results from altered phosphorylation of contractile proteins. Cardiovasc Res 57:37–47. doi:10.1016/s0008-6363(02)00606-5

    Article  PubMed  Google Scholar 

  • Wang Y, Xu Y, Kerrick WGL, Wang Y, Guzman G, Diaz-Perez Z, Szczesna-Cordary D (2006) Prolonged Ca2+ and force transients in myosin RLC transgenic mouse fibers expressing malignant and benign FHC mutations. J Mol Biol 361:286–299. doi:10.1016/j.jmb.2006.06.018

    Article  PubMed  CAS  Google Scholar 

  • Warren SA et al (2012) Myosin light chain phosphorylation is critical for adaptation to cardiac stress. Circulation 126:2575–2588. doi:10.1161/CIRCULATIONAHA.112.116202

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Wijnker PJ, Murphy AM, Stienen GJ, van der Velden J (2014) Troponin I phosphorylation in human myocardium in health and disease. Neth Heart J 22:463–469. doi:10.1007/s12471-014-0590-4

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Winstanley MA, Trayer HR, Trayer IP (1977) Role of the myosin light chains in binding to actin. FEBS Lett 77:239–242

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Harrison DH, Schlichting I, Sweet RM, Kalabokis VN, Szent-Gyorgyi AG, Cohen C (1994) Structure of the regulatory domain of scallop myosin at 2.8 A resolution. Nature 368:306–312

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Dewey S, Nguyen S, Gomes AV (2010) Malignant and benign mutations in familial cardiomyopathies: insights into mutations linked to complex cardiovascular phenotypes. J Mol Cell Cardiol 48:899–909

    Article  PubMed  CAS  Google Scholar 

  • Yuan CC et al (2015) Constitutive phosphorylation of cardiac myosin regulatory light chain prevents development of hypertrophic cardiomyopathy in mice. Proc Natl Acad Sci USA. doi:10.1073/pnas.1505819112

    Google Scholar 

Download references

Acknowledgments

The authors thank Michelle Jones for critical reading of the manuscript. This work was supported in part by grants from the National Institutes of Health HL108343 and HL123255 (D.S-C.); and the American Heart Association 12PRE12030412 (W.H.). The content is solely the responsibility of the authors and does not necessarily reflect the official views of the National Center for Research Resources or the NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danuta Szczesna-Cordary.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, W., Szczesna-Cordary, D. Molecular mechanisms of cardiomyopathy phenotypes associated with myosin light chain mutations. J Muscle Res Cell Motil 36, 433–445 (2015). https://doi.org/10.1007/s10974-015-9423-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10974-015-9423-3

Keywords