Abstract
Sexual dysfunction is a clinical condition due to different causes including the iatrogenic origin. For instance, it is well known that sexual dysfunction may occur in patients treated with antidepressants like selective serotonin reuptake inhibitors (SSRI). A similar side effect has been also reported during treatment with finasteride, an inhibitor of the enzyme 5alpha-reductase, for androgenetic alopecia. Interestingly, sexual dysfunction persists in both cases after drug discontinuation. These conditions have been named post-SSRI sexual dysfunction (PSSD) and post-finasteride syndrome (PFS). In particular, feeling of a lack of connection between the brain and penis, loss of libido and sex drive, difficulty in achieving an erection and genital paresthesia have been reported by patients of both conditions. It is interesting to note that the incidence of these diseases is probably so far underestimated and their etiopathogenesis is not sufficiently explored. To this aim, the present review will report the state of art of these two different pathologies and discuss, on the basis of the role exerted by three different neuromodulators such as dopamine, serotonin and neuroactive steroids, whether the persistent sexual dysfunction observed could be determined by common mechanisms.





Similar content being viewed by others
References
D.A. Finn, A.S. Beadles-Bohling, E.H. Beckley, M.M. Ford, K.R. Gililland, R.E. Gorin-Meyer, K.M. Wiren, A new look at the 5alpha-reductase inhibitor finasteride. Cns. Drug. Rev. 12(1), 53–76 (2006). https://doi.org/10.1111/j.1527-3458.2006.00053.x
A.M. Traish, R.C. Melcangi, M. Bortolato, L.M. Garcia-Segura, M. Zitzmann, Adverse effects of 5alpha-reductase inhibitors: what do we know, don’t know, and need to know?. Rev. Endocr. Metab. Disord. 16, 177–198 (2015). https://doi.org/10.1007/s11154-015-9319-y
K.D. Kaufman, E.A. Olsen, D. Whiting, R. Savin, R. DeVillez, W. Bergfeld, V.H. Price, D. Van Neste, J.L. Roberts, M. Hordinsky, J. Shapiro, B. Binkowitz, G.J. Gormley, , Finasteride in the treatment of men with androgenetic alopecia. Finasteride male pattern hair loss study group. J. Am. Acad. Dermatol. 39(4 Pt 1), 578–589 (1998). https://doi.org/S0190-9622(98)70007-6
S.V. Frye, H.N. Bramson, D.J. Hermann, F.W. Lee, A.K. Sinhababu, G. Tian, Discovery and development of GG745, a potent inhibitor of both isozymes of 5 alpha-reductase. Pharm. Biotechnol. 11, 393–422 (1998)
J.C. Nickel, Y. Fradet, R.C. Boake, P.J. Pommerville, J.P. Perreault, S.K. Afridi, M.M. Elhilali, Efficacy and safety of finasteride therapy for benign prostatic hyperplasia: Results of a 2-year randomized controlled trial (the PROSPECT study). PROscar Safety Plus Efficacy Canadian Two year Study. CMAJ 155(9), 1251–1259 (1996)
P. Siami, C.G. Roehrborn, J. Barkin, R. Damiao, M. Wyczolkowski, A. Duggan, K. Major-Walker, B.B. Morrill, A.Tsg Comb, Combination therapy with dutasteride and tamsulosin in men with moderate-to-severe benign prostatic hyperplasia and prostate enlargement: The CombAT (Combination of Avodart and Tamsulosin) trial rationale and study design. Contemp. Clin. Trials 28(6), 770–779 (2007). https://doi.org/10.1016/j.cct.2007.07.008
S.A. Kaplan, D.E. Chung, R.K. Lee, S. Scofield, A.E. Te, A 5-year retrospective analysis of 5alpha-reductase inhibitors in men with benign prostatic hyperplasia: Finasteride has comparable urinary symptom efficacy and prostate volume reduction, but less sexual side effects and breast complications than dutasteride. Int. J. Clin. Pract. 66(11), 1052–1055 (2012). https://doi.org/10.1111/j.1742-1241.2012.03010.x
A. La Torre, G. Giupponi, D. Duffy, A. Conca, T. Cai, A. Scardigli, Sexual dysfunction related to drugs: A critical review. Part V: alpha-blocker and 5-ARI drugs. Pharmacopsychiatry 49(1), 3–13 (2016). https://doi.org/10.1055/s-0035-1565100
S. Gur, P.J. Kadowitz, W.J. Hellstrom, Effects of 5-alpha reductase inhibitors on erectile function, sexual desire and ejaculation. Expert. Opin. Drug. Saf. 12(1), 81–90 (2013). https://doi.org/10.1517/14740338.2013.742885
G. Corona, G. Rastrelli, E. Maseroli, G. Balercia, A. Sforza, G. Forti, E. Mannucci, M. Maggi, Inhibitors of 5alpha-reductase-related side effects in patients seeking medical care for sexual dysfunction. J. Endocrinol. Invest. 35(10), 915–920 (2012). https://doi.org/10.3275/8510
A.M. Traish, J. Hassani, A.T. Guay, M. Zitzmann, M.L. Hansen, Adverse side effects of 5alpha-reductase inhibitors therapy: Persistent diminished libido and erectile dysfunction and depression in a subset of patients. J. Sex. Med. 8(3), 872–884 (2011). https://doi.org/10.1111/j.1743-6109.2010.02157.x
M.S. Irwig, S. Kolukula, Persistent sexual side effects of finasteride for male pattern hair loss. J. Sex. Med. 8(6), 1747–1753 (2011). https://doi.org/10.1111/j.1743-6109.2011.02255.x
M.S. Irwig, Persistent sexual side effects of finasteride: Could they be permanent? J. Sex. Med. 9(11), 2927–2932 (2012). https://doi.org/10.1111/j.1743-6109.2012.02846.x
M. Guo, B. Heran, R. Flannigan, A. Kezouh, M. Etminan, Persistent sexual dysfunction with finasteride 1 mg taken for hair loss. Pharmacotherapy 36(11), 1180–1184 (2016). https://doi.org/10.1002/phar.1837
T. Kiguradze, W.H. Temps, P.R. Yarnold, J. Cashy, R.E. Brannigan, B. Nardone, G. Micali, D.P. West, S.M. Belknap, Persistent erectile dysfunction in men exposed to the 5alpha-reductase inhibitors, finasteride, or dutasteride. PeerJ 5, e3020 (2017). https://doi.org/10.7717/peerj.3020
G. Chiriaco, S. Cauci, G. Mazzon, C. Trombetta, An observational retrospective evaluation of 79 young men with long-term adverse effects after use of finasteride against androgenetic alopecia. Andrology 4(2), 245–250 (2016). https://doi.org/10.1111/andr.12147
C.A. Ganzer, A.R. Jacobs, F. Iqbal, Persistent sexual, emotional, and cognitive impairment post-finasteride: a survey of men reporting symptoms. Am. J. Mens Health (2014). https://doi.org/10.1177/1557988314538445
S. Basaria, R. Jasuja, G. Huang, W. Wharton, H. Pan, K. Pencina, Z. Li, T.G. Travison, J. Bhawan, R. Gonthier, F. Labrie, A.Y. Dury, C. Serra, A. Papazian, M. O’Leary, S. Amr, T.W. Storer, E. Stern, S. Bhasin, Characteristics of men who report persistent sexual symptoms after finasteride use for hair loss. J. Clin. Endocrinol. Metab., jc20162726 (2016). https://doi.org/10.1210/jc.2016-2726
R.C. Melcangi, D. Santi, R. Spezzano, M. Grimoldi, T. Tabacchi, M.L. Fusco, S. Diviccaro, S. Giatti, G. Carra, D. Caruso, M. Simoni, G. Cavaletti, Neuroactive steroid levels and psychiatric and andrological features in post-finasteride patients. J. Steroid Biochem. Mol. Biol. 171, 229–235 (2017). https://doi.org/10.1016/j.jsbmb.2017.04.003
A.K. Ali, B.S. Heran, M. Etminan, Persistent sexual dysfunction and suicidal ideation in young men treated with low-dose finasteride: A pharmacovigilance study. Pharmacotherapy 35(7), 687–695 (2015). https://doi.org/10.1002/phar.1612
R. Fertig, J. Shapiro, W. Bergfeld, A. Tosti, Investigation of the plausibility of 5-alpha-reductase inhibitor syndrome. Skin. Appendage Disord. 2(3-4), 120–129 (2017). https://doi.org/10.1159/000450617
G. Altomare, G.L. Capella, Depression circumstantially related to the administration of finasteride for androgenetic alopecia. J. Dermatol. 29(10), 665–669 (2002)
B. Rahimi-Ardabili, R. Pourandarjani, P. Habibollahi, A. Mualeki, Finasteride induced depression: a prospective study. Bmc. Clin. Pharmacol. 6, 7 (2006). https://doi.org/10.1186/1472-6904-6-7
M.S. Irwig, Depressive symptoms and suicidal thoughts among former users of finasteride with persistent sexual side effects. J. Clin. Psychiatry 73(9), 1220–1223 (2012). https://doi.org/10.4088/JCP.12m07887
C. Hogan, J. Le Noury, D. Healy, D. Mangin, One hundred and twenty cases of enduring sexual dysfunction following treatment. Int. J. risk Saf. Med. 26(2), 109–116 (2014). https://doi.org/10.3233/jrs-140617
R.C. Melcangi, D. Caruso, F. Abbiati, S. Giatti, D. Calabrese, F. Piazza, G. Cavaletti, Neuroactive steroid levels are modified in cerebrospinal fluid and plasma of post-finasteride patients showing persistent sexual side effects and anxious/depressive symptomatology. J. Sex. Med. 10(10), 2598–2603 (2013). https://doi.org/10.1111/jsm.12269
D. Caruso, F. Abbiati, S. Giatti, S. Romano, L. Fusco, G. Cavaletti, R.C. Melcangi, Patients treated for male pattern hair with finasteride show, after discontinuation of the drug, altered levels of neuroactive steroids in cerebrospinal fluid and plasma. J. Steroid Biochem. Mol. Biol. 146, 74–79 (2015). https://doi.org/10.1016/j.jsbmb.2014.03.012
V.S. Williams, H.M. Edin, S.L. Hogue, S.E. Fehnel, D.S. Baldwin, Prevalence and impact of antidepressant-associated sexual dysfunction in three European countries: replication in a cross-sectional patient survey. J. Psychopharmacol. 24(4), 489–496 (2010). https://doi.org/10.1177/0269881109102779
E.M. Haberfellner, A review of the assessment of antidepressant-induced sexual dysfunction used in randomized, controlled clinical trials. Pharmacopsychiatry 40(5), 173–182 (2007). https://doi.org/10.1055/s-2007-985881
Y. Reisman, Sexual Consequences of Post-SSRI Syndrome. Sexual Medicine Reviews (2017). https://doi.org/10.1016/j.sxmr.2017.05.002
A. Bahrick, Persistence of sexual dysfunction side effects after discontinuation of antidepressant medications: emerging evidence. Open Psychol. J. 1, 9 (2008)
A.B. Csoka, S. Shipko, Persistent sexualÿ side effects after SSRI discontinuation. Psychother. Psychosom. 75, 187–188 (2006).
A.B. Csoka, A. Bahrick, O.P. Mehtonen, Persistent sexual dysfunction after discontinuation of selective serotonin reuptake inhibitors. J. Sex. Med. 5(1), 227–233 (2008). https://doi.org/10.1111/j.1743-6109.2007.00630.x
R.J. Mathew, M.L. Weinman, Sexual dysfunctions in depression. Arch. Sex. Behav. 11(4), 323–328 (1982)
R.C. Rosen, R.M. Lane, M. Menza, Effects of SSRIs on sexual function: a critical review. J. Clin. Psychopharmacol. 19(1), 67–85 (1999)
E.O. Laumann, L.J. Waite, Sexual dysfunction among older adults: prevalence and risk factors from a nationally representative U.S. probability sample of men and women 57–85 years of age. J. Sex. Med. 5(10), 2300–2311 (2008). https://doi.org/10.1111/j.1743-6109.2008.00974.x
J. Ben-Sheetrit, D. Aizenberg, A.B. Csoka, A. Weizman, H. Hermesh, Post-SSRI sexual dysfunction: Clinical characterization and preliminary assessment of contributory factors and dose–response relationship. J. Clin. Psychopharmacol. 35(3), 273–278 (2015). https://doi.org/10.1097/jcp.0000000000000300
A. Bala, H.M. Tue Nguyen, W.J.G. Hellstrom, Post-SSRI Sexual Dysfunction: A Literature Review. Sexual medicine reviews (2017). https://doi.org/10.1016/j.sxmr.2017.07.002
M.V. Lombardo, E. Ashwin, B. Auyeung, B. Chakrabarti, K. Taylor, G. Hackett, E.T. Bullmore, S. Baron-Cohen, Fetal testosterone influences sexually dimorphic gray matter in the human brain. J. Neurosci. 32(2), 674–680 (2012). https://doi.org/10.1523/JNEUROSCI.4389-11.2012
J.G. Pfaus, Pathways of sexual desire. J. Sex. Med. 6(6), 1506–1533 (2009). https://doi.org/10.1111/j.1743-6109.2009.01309.x
D. Santi, G. Spaggiari, L. Gilioli, F. Poti, M. Simoni, L. Casarini, Molecular basis of androgen action on human sexual desire. Mol. Cell. Endocrinol. (2017). https://doi.org/10.1016/j.mce.2017.09.007
T.B. Poeppl, B. Langguth, R. Rupprecht, A. Safron, D. Bzdok, A.R. Laird, S.B. Eickhoff, The neural basis of sex differences in sexual behavior: A quantitative meta-analysis. Front. Neuroendocrinol. 43, 28–43 (2016). https://doi.org/10.1016/j.yfrne.2016.10.001
G. Corona, A.M. Isidori, A. Aversa, A.L. Burnett, M. Maggi, Endocrinologic control of men’s sexual desire and arousal/erection. J. Sex. Med. 13(3), 317–337 (2016). https://doi.org/10.1016/j.jsxm.2016.01.007
C.R. Mazzola, J.P. Mulhall, Impact of androgen deprivation therapy on sexual function. Asian J. Androl. 14(2), 198–203 (2012). https://doi.org/10.1038/aja.2011.106
S.M. Stahl, C. Lee-Zimmerman, S. Cartwright, D.A. Morrissette, Serotonergic drugs for depression and beyond. Curr. Drug. Targets 14(5), 578–585 (2013)
G. Bronner, S. Hassin-Baer, T. Gurevich, Sexual preoccupation behavior in Parkinson’s disease. J. Park. Dis. 7(1), 175–182 (2017). https://doi.org/10.3233/JPD-160926
K.B. Bhattacharyya, M. Rosa-Grilo, Sexual dysfunctions in Parkinson’s disease: An underrated problem in a much discussed disorder. Int. Rev. Neurobiol. 134, 859–876 (2017). https://doi.org/10.1016/bs.irn.2017.05.019
V. Voon, T.C. Napier, M.J. Frank, V. Sgambato-Faure, A.A. Grace, M. Rodriguez-Oroz, J. Obeso, E. Bezard, P.O. Fernagut, Impulse control disorders and levodopa-induced dyskinesias in Parkinson’s disease: an update. Lancet Neurol. 16(3), 238–250 (2017). https://doi.org/10.1016/S1474-4422(17)30004-2
F. Courtois, S. Carrier, K. Charvier, P.A. Guertin, N.M. Journel, The control of male sexual responses. Curr. Pharm. Des. 19(24), 4341–4356 (2013)
A. Argiolas, M. Melis, Neuropeptides and central control of sexual behaviour from the past to the present: a review. Prog. Neurobiol. 108, 80–107 (2013). https://doi.org/10.1016/j.pneurobio.2013.06.006
B. Capel, Sex in the 90s: SRY and the switch to the male pathway. Annu. Rev. Physiol. 60, 497–523 (1998)
F. Zhao, H.L. Franco, K.F. Rodriguez, P.R. Brown, M.J. Tsai, S.Y. Tsai, H.H. Yao, Elimination of the male reproductive tract in the female embryo is promoted by COUP-TFII in mice. Science 357(6352), 717–720 (2017). https://doi.org/10.1126/science.aai9136
A. Jost, B. Vigier, J. Prepin, J.P. Perchellet, Studies on sex differentiation in mammals. Recent. Prog. Horm. Res. 29, 1–41 (1973)
A.P. Arnold, R.A. Gorski, Gonadal steroid induction of structural sex differences in the central nervous system. Annu. Rev. Neurosci. 7, 413–442 (1984). https://doi.org/10.1146/annurev.ne.07.030184.002213
B.M. Nugent, C.L. Wright, A.C. Shetty, G.E. Hodes, K.M. Lenz, A. Mahurkar, S.J. Russo, S.E. Devine, M.M. McCarthy, Brain feminization requires active repression of masculinization via DNA methylation. Nat. Neurosci. 18(5), 690–697 (2015). https://doi.org/10.1038/nn.3988
M.M. McCarthy, B.M. Nugent, Epigenetic contributions to hormonally-mediated sexual differentiation of the brain. J. Neuroendocrinol. 25, 1133–1140 (2013). https://doi.org/10.1111/jne.12072
R. Wilen, F. Naftolin, Pubertal food intake, body length, weight, and composition in the well fed female rat. Pediatr. Res. 11(5), 701–703 (1977). https://doi.org/10.1203/00006450-197705000-00016
M. Sanchez-Garrido, M. Tena-Sempere, Metabolic control of puberty: Roles of leptin and kisspeptins. Horm. Behav. 64(2), 187–194 (2013). https://doi.org/10.1016/j.yhbeh.2013.01.014
B. Ellis, The hypothalamic-pituitary-gonadal axis: A switch-controlled, condition-sensitive system in the regulation of life history strategies. Horm. Behav. 64(2), 215–225 (2013). https://doi.org/10.1016/j.yhbeh.2013.02.012
A.O. Brinkmann, Molecular basis of androgen insensitivity. Mol. Cell. Endocrinol. 179(1–2), 105–109 (2001)
D. El-Maouche, W. Arlt, D.P. Merke, Congenital adrenal hyperplasia. Lancet 390(10108), 2194–2210 (2017). https://doi.org/10.1016/S0140-6736(17)31431-9
C. Frye, E. Bo, G. Calamandrei, L. Calza, F. Dessi-Fulgheri, M. Fernandez, L. Fusani, O. Kah, M. Kajta, Y. Le Page, H.B. Patisaul, A. Venerosi, A.K. Wojtowicz, G.C. Panzica, Endocrine disrupters: A review of some sources, effects, and mechanisms of actions on behaviour and neuroendocrine systems. J. Neuroendocrinol. 24(1), 144–159 (2012). https://doi.org/10.1111/j.1365-2826.2011.02229.x
C.A. Frye, Endocrine-disrupting chemicals: Elucidating our understanding of their role in sex and gender-relevant end points. Vitam. Horm. 94, 41–98 (2014). https://doi.org/10.1016/B978-0-12-800095-3.00003-1
E.M Hull, R.I Wood, K.E McKenna, The neurobiology of male sexual behavior. J Neill, D Pfaff(eds.) The Physiology of Reproduction. (Elsevier, Amsterdam, 2006) pp. 1729–1824.
R.G. Will, E.M. Hull, J.M. Dominguez, Influences of dopamine and glutamate in the medial preoptic area on male sexual behavior. Pharmacol. Biochem. Behav. 121, 115–123 (2014). https://doi.org/10.1016/j.pbb.2014.02.005
M. Peeters, F. Giuliano, Central neurophysiology and dopaminergic control of ejaculation. Neurosci. Biobehav. Rev. 32(3), 438–453 (2008). https://doi.org/10.1016/j.neubiorev.2007.07.013
C.J. Zeiss, Neuroanatomical phenotyping in the mouse: the dopaminergic system. Vet. Pathol. 42(6), 753–773 (2005). https://doi.org/10.1354/vp.42-6-753
A. Bjorklund, O. Lindvall, A. Nobin, Evidence of an incerto-hypothalamic dopamine neurone system in the rat. Brain. Res. 89(1), 29–42 (1975)
C.K. Wagner, M.J. Eaton, K.E. Moore, K.J. Lookingland, Efferent projections from the region of the medial zona incerta containing A13 dopaminergic neurons: a PHA-L anterograde tract-tracing study in the rat. Brain. Res. 677(2), 229–237 (1995)
E.M. Hull, J.W. Muschamp, S. Sato, Dopamine and serotonin: influences on male sexual behavior. Physiol. Behav. 83(2), 291–307 (2004). https://doi.org/10.1016/j.physbeh.2004.08.018
M. Amalric, G.F. Koob, Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog. Brain. Res. 99, 209–226 (1993)
E.M. Hull, D. Bitran, E.A. Pehek, R.K. Warner, L.C. Band, G.M. Holmes, Dopaminergic control of male sex behavior in rats: effects of an intracerebrally-infused agonist. Brain. Res. 370(1), 73–81 (1986)
J.G. Pfaus, A.G. Phillips, Role of dopamine in anticipatory and consummatory aspects of sexual behavior in the male rat. Behav. Neurosci. 105(5), 727–743 (1991)
D.S. Lorrain, J.V. Riolo, L. Matuszewich, E.M. Hull, Lateral hypothalamic serotonin inhibits nucleus accumbens dopamine: implications for sexual satiety. J. Neurosci. 19, 7648–7652 (1999)
N.L. Brackett, P.M. Iuvone, D.A. Edwards, Midbrain lesions, dopamine and male sexual behavior. Behav. Brain. Res. 20(2), 231–240 (1986)
J. Moses, J.A. Loucks, H.L. Watson, L. Matuszewich, E.M. Hull, Dopaminergic drugs in the medial preoptic area and nucleus accumbens: Effects on motor activity, sexual motivation, and sexual performance. Pharmacol. Biochem. Behav. 51, 681–686 (1995)
T.E. Kippin, V. Sotiropoulos, J. Badih, J.G. Pfaus, Opposing roles of the nucleus accumbens and anterior lateral hypothalamic area in the control of sexual behaviour in the male rat. Eur. J. Neurosci. 19(3), 698–704 (2004)
L.M. Creutz, M.F. Kritzer, Estrogen receptor-beta immunoreactivity in the midbrain of adult rats: regional, subregional, and cellular localization in the A10, A9, and A8 dopamine cell groups. J. Comp. Neurol. 446(3), 288–300 (2002)
M.F. Kritzer, Selective colocalization of immunoreactivity for intracellular gonadal hormone receptors and tyrosine hydroxylase in the ventral tegmental area, substantia nigra, and retrorubral fields in the rat. J. Comp. Neurol. 379, 247–260 (1997)
R.B. Simerly, M.C. Zee, J.W. Pendleton, D.B. Lubhan, K.S. Korach, Estrogen receptor-dependent sexual differentiation of dopaminergic neurons in the preoptic region of the mouse. Proc. Natl. Acad. Sci. USA 94, 14077–14082 (1997)
J. Clarkson, A.E. Herbison, Dual phenotype kisspeptin-dopamine neurones of the rostral periventricular area of the third ventricle project to gonadotrophin-releasing hormone neurones. J. Neuroendocrinol. 23(4), 293–301 (2011). https://doi.org/10.1111/j.1365-2826.2011.02107.x
E.M. Hull, R.L. Meisel, B.D. Sachs, Male Sexual Behavior. in Hormones, Brain and Behaviored vol. 1, ed. by D.W. Pfaff, A.P. Arnold, A.M Etgen, S.E. Fahrbach, R.T Rubin (Academic Press, New York, 2002) pp. 1–134
J.M. Dominguez, E.M. Hull, Dopamine, the medial preoptic area, and male sexual behavior. Physiol. Behav. 86, 356–368 (2005)
E.M. Hull, J.M. Dominguez, Getting his act together: Roles of glutamate, nitric oxide, and dopamine in the medial preoptic area. Brain. Res. 1126, 66–75 (2006)
M. Sica, M. Martini, C. Viglietti-Panzica, G.C. Panzica, Estrous cycle influences the expression of neuronal nitric oxide synthase in the hypothalamus and limbic system of female mice. Bmc. Neurosci. 10(78), 01–14 (2009). https://doi.org/10.1186/1471-2202-10-78
G.C. Panzica, C. Viglietti-Panzica, M. Sica, S. Gotti, M. Martini, H. Pinos, B. Carrillo, P. Collado, Effects of gonadal hormones on central nitric oxide producing systems. Neuroscience 138, 987–995 (2006)
S. Sato, C.S. Braham, S.K. Putnam, E.M. Hull, Neuronal nitric oxide synthase and gonadal steroid interaction in the MPOA of male rats: co-localization and testosterone-induced restoration of copulation and nNOS-immunoreactivity. Brain. Res. 1043, 205–213 (2005)
K. Kocsis, J. Kiss, A. Csaki, B. Halasz, Location of putative glutamatergic neurons projecting to the medial preoptic area of the rat hypothalamus. Brain. Res. Bull. 61(4), 459–468 (2003)
A. Tagliamonte, P. Tagliamonte, G.L. Gessa, B.B. Brodie, Compulsive sexual activity induced by p-chlorophenylalanine in normal and pinealectomized male rats. Science 166(3911), 1433–1435 (1969)
A. Albinsson, G. Andersson, K. Andersson, J. Vega-Matuszczyk, K. Larsson, The effects of lesions in the mesencephalic raphe systems on male rat sexual behavior and locomotor activity. Behav. Brain. Res. 80(1–2), 57–63 (1996)
B. Olivier, J.S. Chan, E.M. Snoeren, J.D. Olivier, J.G. Veening, C.H. Vinkers, M.D. Waldinger, R.S. Oosting, Differences in sexual behaviour in male and female rodents: role of serotonin. Curr. Top. Behav. Neurosci. 8, 15–36 (2011). https://doi.org/10.1007/7854_2010_116
H.V.M. Steinbusch. Serotonin-immunoreactive neurons and their projections in the CNS. in Handbook of Chemical Neuroanatomy vol. 3 (Elsevier, Amsterdam, 1984) pp. 68–125.
Z. Sheng, J. Kawano, A. Yanai, R. Fujinaga, M. Tanaka, Y. Watanabe, K. Shinoda, Expression of estrogen receptors (alpha, beta) and androgen receptor in serotonin neurons of the rat and mouse dorsal raphe nuclei; sex and species differences. Neurosci. Res. 49(2), 185–196 (2004). https://doi.org/10.1016/j.neures.2004.02.011
C.L. Bethea, K. Coleman, K. Phu, A.P. Reddy, A. Phu, Relationships between androgens, serotonin gene expression and innervation in male macaques. Neuroscience 274, 341–356 (2014). https://doi.org/10.1016/j.neuroscience.2014.05.056
C.L. Bethea, K. Phu, Y. Belikova, S.C. Bethea, Localization and regulation of reproductive steroid receptors in the raphe serotonin system of male macaques. J. Chem. Neuroanat. 66-67, 19–27 (2015). https://doi.org/10.1016/j.jchemneu.2015.04.001
R.C. Melcangi, L.M. Garcia-Segura, A.G. Mensah-Nyagan, Neuroactive steroids: state of the art and new perspectives. Cell. Mol. Life. Sci. 65(5), 777–797 (2008). https://doi.org/10.1007/s00018-007-7403-5
D.C. Skinner, N.P. Evans, B. Delaleu, R.L. Goodman, P. Bouchard, A. Caraty, The negative feedback actions of progesterone on gonadotropin-releasing hormone secretion are transduced by the classical progesterone receptor. Proc. Natl. Acad. Sci. USA 95(18), 10978–10983 (1998)
P. Micevych, K. Sinchak, Synthesis and function of hypothalamic neuroprogesterone in reproduction. Endocrinology 149(6), 2739–2742 (2008). https://doi.org/10.1210/en.2008-0011
P. Micevych, K. Sinchak, The neurosteroid progesterone underlies estrogen positive feedback of the LH surge. Front Endocrinol. 2, 90 (2011). https://doi.org/10.3389/fendo.2011.00090
M.A. Arevalo, I. Azcoitia, I. Gonzalez-Burgos, L.M. Garcia-Segura, Signaling mechanisms mediating the regulation of synaptic plasticity and memory by estradiol. Horm. Behav. (2015). https://doi.org/S0018-506X(15)00067-7
M. Frankfurt, V. Luine, The evolving role of dendritic spines and memory: Interaction(s) with estradiol. Horm. Behav. (2015). https://doi.org/S0018-506X(15)00085-9
C. Guerra-Araiza, M.A. Amorim, I. Camacho-Arroyo, L.M. Garcia-Segura, Effects of progesterone and its reduced metabolites, dihydroprogesterone and tetrahydroprogesterone, on the expression and phosphorylation of glycogen synthase kinase-3 and the microtubule-associated protein tau in the rat cerebellum. Dev. Neurobiol. 67(4), 510–520 (2007). https://doi.org/10.1002/dneu.20383
D.A. Velazquez-Zamora, L.M. Garcia-Segura, I. Gonzalez-Burgos, Effects of selective estrogen receptor modulators on allocentric working memory performance and on dendritic spines in medial prefrontal cortex pyramidal neurons of ovariectomized rats. Horm. Behav. 61(4), 512–517 (2012). https://doi.org/10.1016/j.yhbeh.2012.01.010
J.M. Bowers, J. Waddell, M.M. McCarthy, , A developmental sex difference in hippocampal neurogenesis is mediated by endogenous oestradiol. Biol. Sex. Differ. 1(1), 8 (2010). https://doi.org/10.1186/2042-6410-1-8
L.A. Galea, , Gonadal hormone modulation of neurogenesis in the dentate gyrus of adult male and female rodents. Brain. Res. Rev. 57(2), 332–341 (2008). https://doi.org/10.1016/j.brainresrev.2007.05.008
R.C. Melcangi, I. Azcoitia, M. Ballabio, I. Cavarretta, L.C. Gonzalez, E. Leonelli, V. Magnaghi, S. Veiga, L.M. Garcia-Segura, , Neuroactive steroids influence peripheral myelination: a promising opportunity for preventing or treating age-dependent dysfunctions of peripheral nerves. Prog. Neurobiol. 71(1), 57–66 (2003). https://doi.org/S0301008203001564
R.C. Melcangi, S. Giatti, D. Calabrese, M. Pesaresi, G. Cermenati, N. Mitro, B. Viviani, L.M. Garcia-Segura, D. Caruso, , Levels and actions of progesterone and its metabolites in the nervous system during physiological and pathological conditions. Prog. Neurobiol. 113, 56–69 (2014). https://doi.org/10.1016/j.pneurobio.2013.07.006
F. Celotti, R.C. Melcangi, L. Martini, The 5 alpha-reductase in the brain: molecular aspects and relation to brain function. Front. Neuroendocrinol. 13(2), 163–215 (1992)
A.M. Traish, , 5alpha-reductases in human physiology: an unfolding story. Endocr. Pract. 18(6), 965–975 (2012). https://doi.org/10.4158/12108.RA
M. Schumacher, C. Mattern, A. Ghoumari, J.P. Oudinet, P. Liere, F. Labombarda, R. Sitruk-Ware, A.F. De Nicola, R. Guennoun, , Revisiting the roles of progesterone and allopregnanolone in the nervous system: resurgence of the progesterone receptors. Prog. Neurobiol. 113, 6–39 (2014). https://doi.org/10.1016/j.pneurobio.2013.09.004
S. Nag, S.S. Mokha, , Activation of a Gq-coupled membrane estrogen receptor rapidly attenuates alpha2-adrenoceptor-induced antinociception via an ERK I/II-dependent, non-genomic mechanism in the female rat. Neuroscience 267, 122–134 (2014). https://doi.org/10.1016/j.neuroscience.2014.02.040
A. Almey, E. Cannell, K. Bertram, E. Filardo, T.A. Milner, W.G. Brake, Medial prefrontal cortical estradiol rapidly alters memory system bias in female rats: ultrastructural analysis reveals membrane-associated estrogen receptors as potential mediators. Endocrinology 155(11), 4422–4432 (2014). https://doi.org/10.1210/en.2014-1463
Y. Qin, Z. Chen, X. Han, H. Wu, Y. Yu, J. Wu, S. Liu, Y. Hou, Progesterone attenuates Abeta(25-35)-induced neuronal toxicity via JNK inactivation and progesterone receptor membrane component 1-dependent inhibition of mitochondrial apoptotic pathway. J. Steroid Biochem. Mol. Biol. 154, 302–311 (2015). https://doi.org/10.1016/j.jsbmb.2015.01.002
D. Belelli, J.J. Lambert, , Neurosteroids: endogenous regulators of the GABA(A) receptor. Nat. Rev. Neurosci. 6(7), 565–575 (2005). https://doi.org/10.1038/nrn1703
J.J. Lambert, M.A. Cooper, R.D. Simmons, C.J. Weir, D. Belelli, , Neurosteroids: endogenous allosteric modulators of GABA(A) receptors. Psychoneuroendocrinology 34(Suppl. 1), S48–S58 (2009). https://doi.org/10.1016/j.psyneuen.2009.08.009
R.J. Handa, T.R. Pak, A.E. Kudwa, T.D. Lund, L. Hinds, , An alternate pathway for androgen regulation of brain function: activation of estrogen receptor beta by the metabolite of dihydrotestosterone, 5alpha-androstane-3beta,17beta-diol. Horm. Behav. 53(5), 741–752 (2008). https://doi.org/10.1016/j.yhbeh.2007.09.012
R.C. Melcangi, S. Giatti, L.M. Garcia-Segura, Levels and actions of neuroactive steroids in the nervous system under physiological and pathological conditions: Sex-specific features. Neurosci. Biobehav. Rev. 67, 25–40 (2016). https://doi.org/10.1016/j.neubiorev.2015.09.023
R.C. Melcangi, L.M. Garcia-Segura, Sex-specific therapeutic strategies based on neuroactive steroids: In search for innovative tools for neuroprotection. Horm. Behav. 57, 2–11 (2010). https://doi.org/10.1016/j.yhbeh.2009.06.001
S. Giatti, L.M. Garcia-Segura, R.C. Melcangi, New steps forward in the neuroactive steroid field. J. Steroid Biochem. Mol. Biol. 153, 127–134 (2015). https://doi.org/10.1016/j.jsbmb.2015.03.002
C.F. Zorumski, S.M. Paul, Y. Izumi, D.F. Covey, S. Mennerick, Neurosteroids, stress and depression: Potential therapeutic opportunities. Neurosci. Biobehav. Rev. 37(1), 109–122 (2013). https://doi.org/10.1016/j.neubiorev.2012.10.005
M.S. Irwig, Decreased alcohol consumption among former male users of finasteride with persistent sexual side effects: A preliminary report. Alcohol. Clin. Exp. Res. 37(11), 1823–1826 (2013). https://doi.org/10.1111/acer.12177
S. Kumar, P. Porcu, D.F. Werner, D.B. Matthews, J.L. Diaz-Granados, R.S. Helfand, A.L. Morrow, The role of GABA(A) receptors in the acute and chronic effects of ethanol: A decade of progress. Psychopharmacol. 205(4), 529–564 (2009). https://doi.org/10.1007/s00213-009-1562-z
S. Giatti, B. Foglio, S. Romano, M. Pesaresi, G. Panzica, L.M. Garcia-Segura, D. Caruso, R.C. Melcangi, , Effects of subchronic finasteride treatment and withdrawal on neuroactive steroid levels and their receptors in the male rat brain. Neuroendocrinology 103(6), 746–757 (2016). https://doi.org/10.1159/000442982
J.T. Hsieh, S.C. Chen, H.J. Yu, H.C. Chang, Finasteride upregulates expression of androgen receptor in hyperplastic prostate and LNCaP cells: Implications for chemoprevention of prostate cancer. Prostate 71(10), 1115–1121 (2011). https://doi.org/10.1002/pros.21325
C. Di Loreto, F. La Marra, G. Mazzon, E. Belgrano, C. Trombetta, S. Cauci, Immunohistochemical evaluation of androgen receptor and nerve structure density in human prepuce from patients with persistent sexual side effects after finasteride use for androgenetic alopecia. PLoS. One. 9(6), e100237 (2014). https://doi.org/10.1371/journal.pone.0100237PONE-D-13-53954
A. Soggiu, C. Piras, V. Greco, P. Devoto, A. Urbani, L. Calzetta, M. Bortolato, P. Roncada, Exploring the neural mechanisms of finasteride: a proteomic analysis in the nucleus accumbens. Psychoneuroendocrinology 74, 387–396 (2016). https://doi.org/10.1016/j.psyneuen.2016.10.001
R. Frau, L.J. Mosher, V. Bini, G. Pillolla, R. Pes, P. Saba, S. Fanni, P. Devoto, M. Bortolato, The neurosteroidogenic enzyme 5alpha-reductase modulates the role of D1 dopamine receptors in rat sensorimotor gating. Psychoneuroendocrinology 63, 59–67 (2016). https://doi.org/10.1016/j.psyneuen.2015.09.014
P. Devoto, R. Frau, V. Bini, G. Pillolla, P. Saba, G. Flore, M. Corona, F. Marrosu, M. Bortolato, Inhibition of 5alpha-reductase in the nucleus accumbens counters sensorimotor gating deficits induced by dopaminergic activation. Psychoneuroendocrinology 37(10), 1630–1645 (2012). https://doi.org/10.1016/j.psyneuen.2011.09.018
I.G. Motofei, D.L. Rowland, M. Manea, S.R. Georgescu, I. Paunica, I. Sinescu, Safety profile of finasteride: distribution of Adverse Effects According to Structural and Informational Dichotomies of the Mind/Brain. Clin. Drug. Investig. 37(6), 511–517 (2017). https://doi.org/10.1007/s40261-017-0501-8
I.G. Motofei, D.L. Rowland, S.R. Georgescu, M. Tampa, D. Baconi, E. Stefanescu, B.C. Baleanu, C. Balalau, V. Constantin, S. Paunica, Finasteride adverse effects in subjects with androgenic alopecia: A possible therapeutic approach according to the lateralization process of the brain. J. Dermatolog. Treat., 1–3 (2016). https://doi.org/10.3109/09546634.2016.1161155
C.A. Ganzer, A.R. Jacobs, Emotional consequences of finasteride: Fool’s gold. Am. J. Mens Health (2016). https://doi.org/10.1177/1557988316631624
K.E. Andersson, Mechanisms of penile erection and basis for pharmacological treatment of erectile dysfunction. Pharmacol. Rev. 63(4), 811–859 (2011). https://doi.org/10.1124/pr.111.004515
H. Graf, M. Walter, C.D. Metzger, B. Abler, Antidepressant-related sexual dysfunction—perspectives from neuroimaging. Pharmacol. Biochem. Behav. 121, 138–145 (2014). https://doi.org/10.1016/j.pbb.2013.12.003
B. Abler, A. Seeringer, A. Hartmann, G. Gron, C. Metzger, M. Walter, J. Stingl, Neural correlates of antidepressant-related sexual dysfunction: a placebo-controlled fMRI study on healthy males under subchronic paroxetine and bupropion. Neuropsychopharmacology 36(9), 1837–1847 (2011). https://doi.org/10.1038/npp.2011.66
B. Abler, G. Gron, A. Hartmann, C. Metzger, M. Walter, Modulation of frontostriatal interaction aligns with reduced primary reward processing under serotonergic drugs. J. Neurosci. 32(4), 1329–1335 (2012). https://doi.org/10.1523/jneurosci.5826-11.2012
R.H. Perlis, G. Laje, J.W. Smoller, M. Fava, A.J. Rush, F.J. McMahon, Genetic and clinical predictors of sexual dysfunction in citalopram-treated depressed patients. Neuropsychopharmacology 34(7), 1819–1828 (2009). https://doi.org/10.1038/npp.2009.4
M.R. Safarinejad, Evaluation of endocrine profile and hypothalamic-pituitary-testis axis in selective serotonin reuptake inhibitor-induced male sexual dysfunction. J. Clin. Psychopharmacol. 28(4), 418–423 (2008). https://doi.org/10.1097/JCP.0b013e31817e6f80
D.J. Lyons, R. Ammari, A. Hellysaz, C. Broberger, Serotonin and antidepressant SSRIs inhibit rat neuroendocrine dopamine neurons: Parallel actions in the lactotrophic axis. J. Neurosci. 36(28), 7392–7406 (2016). https://doi.org/10.1523/jneurosci.4061-15.2016
A.B. Csoka, M. Szyf, Epigenetic side-effects of common pharmaceuticals: a potential new field in medicine and pharmacology. Med. Hypotheses 73(5), 770–780 (2009). https://doi.org/10.1016/j.mehy.2008.10.039
N.K. Popova, T.G. Amstislavskaya, Involvement of the 5-HT(1A) and 5-HT(1B) serotonergic receptor subtypes in sexual arousal in male mice. Psychoneuroendocrinology 27(5), 609–618 (2002)
P. Zheng, , Neuroactive steroid regulation of neurotransmitter release in the CNS: action, mechanism and possible significance. Prog. Neurobiol. 89(2), 134–152 (2009). https://doi.org/10.1016/j.pneurobio.2009.07.001
P. Porcu, A.M. Barron, C.A. Frye, A.A. Walf, S.Y. Yang, X.Y. He, A.L. Morrow, G.C. Panzica, R.C. Melcangi, Neurosteroidogenesis today: novel targets for neuroactive steroid synthesis and action and their relevance for translational research. J. Neuroendocrinol. 28(2) (2016). https://doi.org/10.1111/jne.12351
C. Schule, E. Romeo, D.P. Uzunov, D. Eser, F. di Michele, T.C. Baghai, A. Pasini, M. Schwarz, H. Kempter, R. Rupprecht, Influence of mirtazapine on plasma concentrations of neuroactive steroids in major depression and on 3alpha-hydroxysteroid dehydrogenase activity. Mol. Psychiatry 11(3), 261–272 (2006). https://doi.org/10.1038/sj.mp.4001782
Acknowledgements
The authors would like to thank Andrea Radighieri for the help in collecting data of PSSD patients.
Funding
We thank the Post-Finasteride Foundation for the financial support to R.C.M.
Author contributions
All the authors contributed to the developments, analysis and drafting of this article.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Giatti, S., Diviccaro, S., Panzica, G. et al. Post-finasteride syndrome and post-SSRI sexual dysfunction: two sides of the same coin?. Endocrine 61, 180–193 (2018). https://doi.org/10.1007/s12020-018-1593-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12020-018-1593-5