Skip to main content
Log in

Comparison of yoghurt, heat treated yoghurt, milk and lactose effects on plasmid dissemination in gnotobiotic mice

  • Published:
Antonie van Leeuwenhoek Aims and scope Submit manuscript

Abstract

The effect of yoghurt, heat-treated fermented milk, milk and lactose solution intake on plasmid transfer and establishment of the resulting transconjugants in the digestive tract of mice colonised with human faecal flora were examined. Yoghurt lowered the population level of transconjugants more efficiently than heat-treated fermented milk (−2 log and −1 log respectively) and indicated a beneficial effect of viable bacteria. On the other hand consumption of milk drastically inhibited the establishment of transconjugants, which were below the detection threshold of 102 UFC per g of faeces. We were not able to recover transconjugants from faecal samples with lactose supplementation, indicating a possible inhibition of plasmid transfer. Since the yoghurt, heat-treated fermented milk, milk and lactose solution contained approximately the same lactose concentration it is fair to speculate that lactose may contribute to the inhibiting effects of the various supplementations. The inhibitions described were not associated with other intestinal parameters like the intestinal transit time, the population levels of the recipient, or the donor and total anaerobic microflora. It is evident that other parameters need to be investigated such as the composition of the endogenous microflora and metabolic products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bennett PM, Heritage J, Comanducci A & Dodd HM (1986) Evolution of R plasmids by replicon fusion. J. Antimicrob. Chemother. 18, Suppl C: 103-111

    Google Scholar 

  • Bolivar F (1978) Construction and characterisation of new cloning vehicles. III. Derivatives of plasmid pBR322 carrying unique Eco RI sites for selection of Eco RI generated recombinant DNA molecules. Gene 4: 121-136

    Google Scholar 

  • Boudraa G, Touhami M, Pochart P, Soltana R, Mary JY & Desjeux JF (1990) Effect of feeding yoghurt versus milk in children with persistent diarrhea. J. Pediatr. Gastroenterol. Nutr. 11: 509-512

    Google Scholar 

  • Contrepois M & Gouet P (1969) Utilisation d'une technique microbiologique pour la mesure de la vitesse de transit des microparticules dans le tractus digestif des ruminants. C. R. Acad. Sc. (Paris) série D: 1757-1759

  • Datta N & Hedges RW(1972) Trimethoprim resistance conferred by W plasmids in Enterobacteriaceae. J. Gen. Microbiol. 72: 349-355

    Google Scholar 

  • De Man J C, Rogosa M & Sharpe ME (1960) A medium for the cultivation of lactobacilli. J. Appl. Bact. 23: 130-135

    Google Scholar 

  • Duval-Iflah Y, Gainche I, Ouriet MF, Lett MC & Hubert JC (1994) Recombinant DNA transfer to Escherichia coli of human faecal origin in vitro and in digestive tract of gnotobiotic mice. FEMS Microbiol. Ecol. 15: 79-88

    Google Scholar 

  • Duval-Iflah Y, Maisonneuve S & Ouriet MF (1998) Effect of fermented milk intake on plasmid transfer and on the persistence of transconjugants in the digestive tract of gnotobiotic mice. Antonie van Leeuwenhoek 73: 95-102

    Google Scholar 

  • Duval-Iflah Y, Raibaud P & Rousseau M (1981) Antagonisms among isogenic strains of Escherichia coli in the digestive tracts of gnotobiotic mice. Infect. Immun. 34: 957-969

    Google Scholar 

  • Fuller R (1989) Probiotics in man and animals. J. Appl. Bacteriol. 66: 365-378

    Google Scholar 

  • Garrigues-Jeanjean N, Wittmer A, Ouriet MF & Duval-Iflah Y (1999) Transfer of the shuttle vector pRRI207 between Escherichia coli and Bacteroides spp. in vitro and in vivo in the digestive tract of axenic mice and in gnotoxenic mice inoculated with a human microflora. FEMS Microbiol. Ecology 29: 33-43

    Google Scholar 

  • Goldmann DA & Huskins WC (1997) Control of nosocomial antimicrobial-resistant bacteria: a strategic priority for hospitals worldwide. Clin. Infect. Dis. 24, Suppl 1: S139-S145

    Google Scholar 

  • Guarner F & Schaafsma GJ (1998) Probiotics. Int. J. Food. Microbiol. 39: 237-238

    Google Scholar 

  • Khan AA, Jones RA & Cerniglia CE (1998) Rapid method for the detection of genetically engineered microorganisms by polymerase chain reaction from soil and sediments. J. Ind. Microbiol. Biotechnol. 20: 90-94

    Google Scholar 

  • Maisonneuve S, Ouriet MF & Duval-Iflah Y (2000) Effects of yoghurt intake on plasmid transfer and colonisation with transconjugants in the digestive tract of mice associated with human fecal flora. FEMS Microbiol. Ecology 31: 241-248

    Google Scholar 

  • Marteau P, Flourie B, Pochart P, Chastang C, Desjeux JF & Rambaud JC (1990) Effect of the microbial lactase (EC 3.2.1.23) activity in yoghurt on the intestinal absorption of lactose: an in vivo study in lactase-deficient humans. Br. J. Nutr. 64: 71-79

    Google Scholar 

  • Marteau P, Pochart P, Bouhnik Y & Rambaud JC (1993) The fate and effects of transiting, nonpathogenic microorganisms in the human intestine. In: Simopoulos AP, Corring T & Rérat A (Eds) Intestinal Flora, Immunity, Nutrition and Health (vol. 74, pp 1-21). World Rev. Nutr. Diet. Basel. Karger

    Google Scholar 

  • Mayer KH (1986) The epidemiology of antibiotic resistance in hospitals. J. Antimicrob. Chemother. 18, Suppl C: 223-233

    Google Scholar 

  • O'Brien TF, Pla MP, Mayer KH, Kishi H, Gilleece E, Syvanen M & Hopkins JD (1985) Intercontinental spread of a new antibiotic resistance gene on an epidemic plasmid. Science 230: 87-88

    Google Scholar 

  • Pochart P, Dewit O, Desjeux JF et al. (1989) Viable starter culture, β-galactosidase activity and lactose in duodenum after yogurt ingestion in lactase-deficient humans. Am. J. Clin. Nutr. 49: 828-831

    Google Scholar 

  • Puri P, Rattan A, Bijlani RL, Mahapatra SC & Nath I (1996) Splenic and intestinal lymphocyte proliferation response in mice fed milk or yogurt and challenged with Salmonella typhimurium. Int. J. Food. Sci. Nutr. 47: 391-398

    Google Scholar 

  • Raibaud P, Dickinson AB, Sacquet E, Charlier H & Mocquot G (1966) La microflore du tube digestif du rat. I. Techniques d'étude et milieux de culture proposés. Ann. Inst. Pasteur. 110: 568-590

    Google Scholar 

  • Salminen S, Isolauri E & Salminen E (1996) Clinical uses of probiotics for stabilizing the gut mucosal barrier: Successful strains and future challenges. Antonie van Leeuwenhoek 70: 347-358

    Google Scholar 

  • Sambrook J, Fritsch EF & Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.

    Google Scholar 

  • Sanchez J, Bennett PM & Richmond MH (1982) Expression of elt-B, the gene encoding the beta-subunit of the heat labile enterotoxine of E. coli when cloned in pACY184. FEMS Microbiol. Lett. 14: 1-5

    Google Scholar 

  • Shermak MA, Saavedra JM, Jackson TL, Huang SS, Bayless TM & Perman JA (1995) Effect of yogurt on symptoms and kinetics of hydrogen production in lactose-malabsorbing children. Am. J. Clin. Nutr. 62: 1003-1006

    Google Scholar 

  • Shoemaker NB & Salyers AA (1988) Tetracycline-dependent appearance of plasmidlike forms in Bacteroides uniformis 0061 mediated by conjugal tetracycline resistance elements. J. Bacteriol. 170: 1651-1657

    Google Scholar 

  • Smith BL (Ed) (1992) Codex alimentarius, version abrégée. Programme mixte FAO/OMS sur les normes alimentaires. Romeq

    Google Scholar 

  • Strauss H, Hattis D, Page G, Harrison K, Vogel S & Caldart C (1986a) Genetically-engineered microorganisms: I. Identification, classification, and strain history. Recomb. DNA. Tech. Bull. 9: 1-15

    Google Scholar 

  • Strauss HS, Hattis D, Page G, Harrison K, Vogel S & Caldart C (1986b) Genetically-engineered microorganisms: II. Survival multiplication and genetic transfer. Recomb. DNA. Tech. Bull. 9: 69-88

    Google Scholar 

  • Taux RV, Holmberg SD, & Cohen ML (1989) The epidemiology of gene transfer in the environment. In Levy SB & Miller RV (Eds) Gene transfer in the environment (pp 377-403). McGraw-Hill, New York

    Google Scholar 

  • Trieu-Cuo P, Arthur M & Courvalin P (1987) Origin, evolution and dissemination of antibiotic resistance genes. Microbiol. Sci. 4: 263-266

    Google Scholar 

  • Trieu-Cuo P, Derlot E & Courvalin P (1993) Enhanced conjugative transfer of plasmid DNA from Escherichia coli to Staphylococcus aureus and Listeria monocytogenes. FEMS Microbiol. Lett. 109: 19-23

    Google Scholar 

  • Terzaghi BE & Sandine WE (1975) Improved medium for lactic streptococci and their bacteriophages. Appl. Microbiol. 29: 807-813

    Google Scholar 

  • Tiedje JM & Colwell RK (1989) The planned introduction of genetically engineered organisms: ecological considerations and recommendations. Ecology 70: 298-315

    Google Scholar 

  • Toba T, Watanabe A & Adachi S (1983) Quantitative changes in sugars, especially oligosaccharides, during fermentation and storage of yogurt. J. Dairy Sci. 26: 17-20

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yvonne Duval-Iflah.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maisonneuve, S., Ouriet, MF. & Duval-Iflah, Y. Comparison of yoghurt, heat treated yoghurt, milk and lactose effects on plasmid dissemination in gnotobiotic mice. Antonie Van Leeuwenhoek 79, 199–207 (2001). https://doi.org/10.1023/A:1010246401056

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1010246401056