Skip to main content
Log in

Lifetime fecundity and floral variation in Tuberaria guttata (Cistaceae), a Mediterranean annual

  • Published:
Plant Ecology Aims and scope Submit manuscript

Abstract

In Tuberaria guttata, petal length, ovule number, and seeds per capsule raised steeply with increasing plant size (respectively, in the ranges 6-11 mm, 40-100, and 20-80), while the number of stamens varied relatively little (14-20). All flowers set fruit, and the rates of embryo abortion were independent of plant size and low on average. Individual fecundities had a markedly right-skewed frequency distribution (in the ranges 1-20 capsules and 20-1500 seeds per plant), which issued not only from plant size and flower production being positively correlated, but also from per-flower ovule numbers being directly proportional to plant size. Correlated variation of plant and ovary sizes amplified among-plant inequalities regarding fecundity; allowed larger plants to set ca. 50% more seed than expected on the basis of flower number only; and caused the slope of the size-fecundity relationship to be considerably steeper (at the population level) than if ovule number was a fixed trait. Corolla, ovary and androecium plasticity in Tuberaria are discussed in terms of environmental effects and developmental constraints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Armbruster W. S., di Stilio V. S., Tuxill J. D., Flores T. C. and Velasquez Runk J. L. 1999. Covariance and decoupling of floral and vegetative traits in nine neotropical plants: a re-evaluation of Berg's correlation-pleiades concept. American Journal of Botany 86: 39–55.

    Google Scholar 

  • Ashman T. L. and Hitchens M. S. 2000. Dissecting the causes of variation in intra-inflorescence allocation in a sexually polymorphic species, Fragaria virginiana (Rosaceae). American Journal of Botany 87: 197–204.

    PubMed  Google Scholar 

  • Bawa K. S. and Webb C.J. 1983. Floral variation and sexual differentiation in Muntingia calabura (Elaeocarpaceae), a species with hermaphrodite flowers. Evolution 37: 1271–1282.

    Google Scholar 

  • Berg R. L. 1960. The ecological significance of correlation pleiades. Evolution 14: 171–180.

    Google Scholar 

  • Burd M. 1999. Flower number and floral components in ten angiosperm species: an examination of assumptions about tradeoffs in reproductive evolution. Biological Journal of the Linnean Society 68: 579–592.

    Google Scholar 

  • Carroll A. B., Pallardy S. G. and Galen C. 2001. Drought stress, plant water status, and floral trait expression in fireweed, Epilobium angustifolium (Onagraceae). American Journal of Botany 88: 438–446.

    PubMed  Google Scholar 

  • Charlesworth D. and Charlesworth B. 1981. Allocation of resources to male and female functions in hermaphrodites. Biological Journal of the Linnean Society 15: 57–74.

    Google Scholar 

  • Conner J. K. and Via S. 1993. Patterns of phenotypic and genetic correlations among morphological and life-history traits in Wild Radish, Raphanus raphanistrum. Evolution 47: 704–711.

    Google Scholar 

  • Conner J. K. and Sterling A. 1995. Testing hypotheses of functional relationships: a comparative survey of correlation patterns among floral traits in five insect-pollinated plants. American Journal of Botany 82: 1399–1406.

    Google Scholar 

  • Cresswell J. E. 2000. Manipulation of female architecture in flowers reveals a narrow optimum for pollen deposition. Ecology 81: 3244–3249.

    Google Scholar 

  • Cresswell J. E., Hagen C. and Woolnough J. M. 2001. Attributes of individual flowers of Brassica napus L. are affected by defoliation but not by intraspecific competition. Annals of Botany 88: 111–117.

    Google Scholar 

  • Diggle P. K. 1994. The expression of andromonoecy in Solanum hirtum (Solanaceae): phenotypic plasticity and ontogenetic contingency. American Journal of Botany 81: 1354–1365.

    Google Scholar 

  • Elle E. and Hare J. D. 2002. Environmentally induced variation in floral traits affects the mating system in Datura wrightii. Functional Ecology 16: 79–88.

    Google Scholar 

  • Fone A. L. 1989. A comparative demographic study of annual and perennial Hypochaeris (Asteraceae). Journal of Ecology. 77: 495–508.

    Google Scholar 

  • Galen C. 1994. Cost of reproduction in Polemonium viscosum–Phenotypic and genetic approaches. Evolution 47: 1073–1079.

    Google Scholar 

  • Gallego M. J. 1993. 3. Xolantha Raf. Pp 351-365 In: Castroviejo S., Aedo C., Cirujano S., Lainz M., Montserrat P., Morales R., Muñoz Garmendia F., Navbarro C., Paiva J. and Soriano C.(Eds.), Flora Iberica Vol III. Real Jardín Botánico, Madrid, Spain.

    Google Scholar 

  • Harper J. L. 1977. Population biology of plants. Academic Press, London, UK.

    Google Scholar 

  • Herrera C. M. 1991. Dissecting factors responsible for individual variation in plant fecundity. Ecology 72: 1436–1448.

    Google Scholar 

  • Herrera C. M., Cerda X., Garcia M. B., Guitian J., Medrano M., Rey P. J. and Sanchez-Lafuente A. M. 2002. Floral integration, phenotypic covariance structure and pollinator variation in bumblebeepollinated Helleborus foetidus. Journal of Evolutionary Biology 15: 108–121.

    Google Scholar 

  • Herrera J. 1992. Flower variation and breeding systems in the Cistaceae. Plant Systematics and Evolution 179: 245–256.

    Google Scholar 

  • Herrera J. 2001. The variability of organs differentially involved in pollination, and correlations of traits in genisteae (Leguminosae: Papilionoideae). Annals of Botany 88: 1027–1037.

    Google Scholar 

  • Holtsford T. P. and Ellstrand N. C. 1992. Genetic and environmental variation in floral traits afffecting outcrossing rate in Clarkia tembloriensis (Onagraceae). Evolution 46: 216–225.

    Google Scholar 

  • Horvitz C. C. and Schemske D. W. 1988. Demographic cost of reproduction in a neotropical herb: an experimental field study. Ecology 69: 1741–1745.

    Google Scholar 

  • Jong T. J. D. and Klinkhamer P. G. L. 1994. Plant size and reproductive success through female and male function. Journal of Ecology. 82: 399–402.

    Google Scholar 

  • Kadmon R. and Shmida A. 1990. Patterns and causes of spatial variation in the reproductive success of a desert annual. Oecologia 83: 139–144.

    Google Scholar 

  • Kang H. and Primack R. B. 1991. Temporal variation of flower and fruit size in relation to seed yield in Celandine Poppy (Chelidonium majus, Papaveraceae). American Journal of Botany 78: 711–722.

    Google Scholar 

  • Lloyd D. G. 1980. Sexual strategies in plants. I. An hypothesis of serial adjustment of maternal investment during one reproductive session. New Phytologist 86: 69–79.

    Google Scholar 

  • Lloyd D. G. and Bawa K. S. 1984. Modification of the gender of seed plants in varying conditions. Evolutionary Biology 17: 255–339.

    Google Scholar 

  • Lovett-Doust J. and Cavers P. B. 1982. Biomass allocation in hermaphrodite flowers. Canadian Journal of Botany 60: 2530–2534.

    Google Scholar 

  • Mazer S. J. 1992. Environmental and genetic sources of variation in floral traits and phenotypic gender in Wild Radish: consequences for natural selection. Pp 281-325 In: Wyatt R. (Ed.), Ecology and evolution of plant reproduction. Chapman and Hall, New York, New York, USA.

    Google Scholar 

  • Mazer S. J. and Dawson K. A. 2001. Size-dependent sex allocation within flowers of the annual herb Clarkia unguiculata (Onagraceae): ontogenetic and among-plant variation. American Journal of Botany 88: 819–831.

    PubMed  Google Scholar 

  • Nandi O. I. 1998. Floral development and systematics of Cistaceae. Plant Systematics and Evolution 212: 107–134.

    Google Scholar 

  • Niklas K. J. 1994. Plant allometry. University of Chicago Press, Chicago, Illinois, USA.

    Google Scholar 

  • Primack R. and Stacy E. 1998. Cost of reproduction in the pink lady's slipper orchid, (Cypripedium acaule, Orchidaceae): an eleven-year experimental study of three populations. American Journal of Botany 85: 1672–1679.

    Google Scholar 

  • Reekie E. G. and Bazzaz F. A. 1992. Cost of reproduction as reduced growth in genotypes of 2 congeneric species with contrasting life histories. Oecologia 90: 21–26.

    Google Scholar 

  • Rice K. J. 1990. Reproductive hierarchies in Erodium: effects of variation in plant density and rainfall distribution. Ecology 71: 1316–1322.

    Google Scholar 

  • Scheiner S. M. 1987. Size and fecundity hierarchies in an herbaceous perennial. Oecologia 74: 128–132.

    Google Scholar 

  • Sherry R. A. and Lord E. M. 1996. Developmental stability in flowers of Clarkia tembloriensis (Onagraceae). Journal of Evolutionary Biology 9: 911–930.

    Google Scholar 

  • Stebbins G. L. 1974. Flowering plants: evolution above the species level. Belknap Press, Cambridge, Massachusetts, USA.

    Google Scholar 

  • Svensson L. 1992. Estimates of hierarchical variation in flower morphology in natural populations of Scleranthus annuus (Caryophyllaceae), an inbreeding annual. Plant Systematics and Evolution 180: 157–180.

    Google Scholar 

  • Talavera S., Gibbs P. E. and Herrera J. 1993. The reproductive biology of Cistus ladanifer L. (Cistaceae). Plant Systematics and Evolution 186: 123–134.

    Google Scholar 

  • Weiner J. 1988. The influence of competition on plant reproduction. Pp. 228-245 In: Lovett-Doust and Lovett-Doust (Eds.), Plant reproductive ecology: patterns and strategies. Oxford Univ. Press, New York, New York, USA.

    Google Scholar 

  • Weiner J. and Thomas S. C. 1992. Competition and allometry in 3 species of annual plants. Ecology 73: 648–656.

    Google Scholar 

  • Wiens D., Calvin C. L., Wilson C. A., Davern C. I., Frank D. and Seavey S. R. 1987. Reproductive success, spontaneous embryo abortion, and genetic load in flowering plants. Oecologia 71: 501–509.

    Google Scholar 

  • Wilson P. 1995. Selection for pollination success and the mechanical fit of Impatiens flowers around bumblebee bodies. Biological Journal of the Linnean Society 55: 355–383.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Herrera, J. Lifetime fecundity and floral variation in Tuberaria guttata (Cistaceae), a Mediterranean annual. Plant Ecology 172, 219–225 (2004). https://doi.org/10.1023/B:VEGE.0000026340.53858.44

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:VEGE.0000026340.53858.44