Abstract
A superconductor placed in a magnetic field and cooled down through the transition temperature expels magnetic flux. This phenomenon, known as the Meissner effect, is arguably the most essential property of superconductors and implies zero resistivity. Surprisingly, several recent experiments have shown that some superconducting samples1,2,3,4,5,6,7 may attract magnetic fieldâthe so-called paramagnetic Meissner effect. The scarce, if not controversial, experimental evidence for this effect makes it difficult to identify the origin of this enigmatic phenomenon, although a large number of possible explanations have been advanced8,9,10,11,12,13,14,15,16. Here we report observations of the paramagnetic Meissner effect with a resolution better than one quantum of magnetic flux. The paramagnetic Meissner effect is found to be an oscillating function of the magnetic field (due to flux quantization) and replaces the normal Meissner effect only above a certain field when several flux quanta are frozen inside a superconductor. The paramagnetic state is found to be metastable and the Meissner state can be restored by external noise. We conclude that the paramagnetic Meissner effect is related to the surface superconductivity and, therefore, represents a general property of superconductors: on decreasing temperature, the flux captured at the third (surface) critical field inside the superconducting sheath compresses into a smaller volume, allowing extra flux to penetrate at the surface.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Braunisch, W. et al. Paramagnetic Meissner effect in Bi high-temperature superconductors. Phys. Rev. Lett. 68, 1908â1911 (1992).
Schliepe, B., Stindtmann, M., Nikolic, I. & Baberschke, K. Positive field-cooled susceptibility in high-TCsuperconductors. Phys. Rev. B 47, 8331â8334 (1993).
Heizel, C., Theiling, T. & Zieman, P. Paramagnetic Meissner effect analyzed by 2nd harmonics of the magnetic susceptibiity. Phys. Rev. B 48, 3445â3454 (1993).
Magnusson, J. et al. Time-dependence of the magnetization of BiSrCaCuO displaying the paramagnetic Meissner effect. Phys. Rev. B 52, 7675â7681 (1995).
Riedling, S. et al. Observation of the Wohlleben effect in YBaCuO single crystals. Phys. Rev. B 49, 13283â13286 (1994).
Thompson, D. J., Minhaj, M. S. M., Wenger, L. E. & Chen, J. T. Observation of paramagnetic Meissner effect in niobium disks. Phys. Rev. Lett. 75, 529â532 (1995).
Kostic, P. et al. Paramagnetic Meissner effect in Nb. Phys. Rev. B 53, 791â801 (1996).
Sigrist, M. & Rice, T. M. Paramagnetic effect in High-TCsuperconductorsâa hint for d-wave superconductivity. J. Phys. Soc. Jpn 61, 4283â4286 (1992).
Kusmartsev, F. V. Destruction of the Meissner effect in granular high-temperature superconductors. Phys. Rev. Lett. 69, 2268â2271 (1992).
Dominguez, D., Jagla, E. A. & Balseiro, C. A. Phenomenological theory of the paramagnetic Meissner effect. Phys. Rev. Lett. 72, 2773â2776 (1994).
Khomskii, D. Wohlleben effect (paramagnetic Meissner effect) in high-temperature superconductors. J. Low Temp. Phys. 95, 205â223 (1994).
Chen, D. X. & Hernando, A. Paramagnetic Meissner effect and pi Josephson junctions. Europhys. Lett. 26, 365â370 (1994).
Shrivastava, K. N. Para-Meissner oscillations in the magnetization of a high-temperature superconductor. Phys. Lett. A 188, 182â186 (1994).
Koshelev, A. E. & Larkin, A. I. Paramagnetic moment in field-cooled superconducting platesâparamagnetic Meissner effect. Phys. Rev. B 52, 13559â13562 (1995).
Khalil, A. E. Inversion of Meissner effect and granular disorder in BiSrCaCuO superconductors. Phys. Rev. B 55, 6625â6630 (1997).
Moshchalkov, V. V., Qui, X. G. & Bruyndoncz, V. Paramagnetic Meissner effect from the self-consistent solution of the GinzburgâLandau equations. Phys. Rev. B 55, 11793â11801 (1997).
Rice, T. M. & Sigrist, M. Paramagnetic Meissner effect in NbâComment. Phys. Rev. B 55, 14647â14848 (1997).
Geim, A. K. et al. Phase transitions in individual sub-micrometre superconductors. Nature 390, 259â262 (1997).
Schweigert, V. A. & Peeters, F. M. Phase transitions in thin superconducting disks. Phys. Rev. B 57, 13817â13832 (1998).
Schweigert, V. A., Peeters, F. M. & Deo, P. S. Vortex phase diagram for mesoscopic superconducting disks. Phys. Rev. Lett. 81, 2783â2786 (1998).
Bolech, A. C., Buscaglia, G. C. & Lopez, A. Numerical simulation of vortex arrays in thin superconducting films. Phys. Rev. B 52, 15719â15722 (1995).
Geim, A. K. et al. Ballistic Hall micromagnetometry. Appl. Phys. Lett. 71, 2379â2381 (1997).
Bezryadin, A., Buzdin, A. & Pannetier, B. Phase diagram of multiply connected superconductors. Phys. Rev. B 51, 3718â3724 (1995).
Benoist, R. & Zwerger, W. Critical fields of mesoscopic superconductors. Z. Phys. B 103, 377â381 (1997).
Palacios, J. J. Vortex matter in superconducting mesoscopic disks: structure, magnetization, and phase transitons. Phys. Rev. B 58,, R5948âR5951 (1998).
Acknowledgements
We thank I. V. Grigorieva, V. V. Moschalkov and F. M. Peeters for discussions and FOM for financial support.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Geim, A., Dubonos, S., Lok, J. et al. Paramagnetic Meissner effect in small superconductors. Nature 396, 144â146 (1998). https://doi.org/10.1038/24110
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/24110