Abstract
Aerosols affect the Earth's temperature and climate by altering the radiative properties of the atmosphere. A large positive component of this radiative forcing from aerosols is due to black carbonâsootâthat is released from the burning of fossil fuel and biomass, and, to a lesser extent, natural fires, but the exact forcing is affected by how black carbon is mixed with other aerosol constituents. From studies of aerosol radiative forcing, it is known that black carbon can exist in one of several possible mixing states; distinct from other aerosol particles (externally mixed1,2,3,4,5,6,7) or incorporated within them (internally mixed1,3,7), or a black-carbon core could be surrounded by a well mixed shell7. But so far it has been assumed that aerosols exist predominantly as an external mixture. Here I simulate the evolution of the chemical composition of aerosols, finding that the mixing state and direct forcing of the black-carbon component approach those of an internal mixture, largely due to coagulation and growth of aerosol particles. This finding implies a higher positive forcing from black carbon than previously thought, suggesting that the warming effect from black carbon may nearly balance the net cooling effect of other anthropogenic aerosol constituents. The magnitude of the direct radiative forcing from black carbon itself exceeds that due to CH4, suggesting that black carbon may be the second most important component of global warming after CO2 in terms of direct forcing.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 51 print issues and online access
$199.00 per year
only $3.90 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Haywood, J. M., Roberts, D. L., Slingo, A., Edwards, J. M. & Shine, K. P. General circulation model calculations of the direct radiative forcing by anthropogenic sulfate and fossil-fuel soot aerosol. J. Clim. 10, 1562â1577 (1997).
Haywood, J. M. & Ramaswamy, V. Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols. J. Geophys. Res. 103, 6043â6058 (1998).
Myhre, G., Stordal, F., Restad, K. & Isaksen, I. S. A. Estimation of the direct radiative forcing due to sulfate and soot aerosols. Tellus B 50, 463â477 (1998).
Cooke, W. F., Liousse, C., Cachier, H. & Feichter, J. Construction of a 1°Ã1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model. J. Geophys. Res. 104, 22137â22162 (1999).
Hansen, J. E. et al. Climate forcings in the industrial era. Proc. Natl Acad. Sci. USA 95, 12753â12758 (1998).
Penner, J. E., Chuang, C. C. & Grant, K. Climate forcing by carbonaceous and sulfate aerosols. Clim. Dyn. 14, 839â851 (1998).
Jacobson, M. Z. A physically-based treatment of elemental carbon optics: Implications for global direct forcing of aerosols. Geophys. Res. Lett. 27, 217â220 (2000).
Jacobson, M. Z. Development and application of a new air pollution modeling system - II. Aerosol module structure and design. Atmos. Environ. 31, 131â144 (1997).
Andreae, M. O. et al. Internal mixture of sea salt, silicates, and excess sulfate in marine aerosols. Science 232, 1620â1623 (1986).
Murphy, D. M. et al. Influence of sea-salt on aerosol radiative properties in the Southern Ocean marine boundary layer. Nature 395, 62â65 (1998).
Posfai, M., Anderson, J. R., Buseck, P. R. & Sievering, H. Soot and sulfate aerosol particles in the remote marine troposphere. J. Geophys. Res. 104, 21685â21693 (1999).
Hegg, D. A., Livingston, J., Hobbs, P. V., Novakov, T. & Russell, P. Chemical apportionment of aerosol column optical depth off the mid-Atlantic coast of the United States. J. Geophys. Res. 102, 25293â25303 (1997).
Russell, P. B., Hobbs, P. V. & Stowe, L. L. Aerosol properties and radiative effects in the United States East Coast haze plume: An overview of the tropospheric aerosol radiative forcing observational experiment (TARFOX). J. Geophys. Res. 104, 2213â2222 (1999).
Jayaraman, A. et al. Direct observations of aerosol radiative forcing over the tropical Indian Ocean during the January-February 1996 pre-INDOEX cruise. J. Geophys. Res. 103, 13827â13836 (1998).
Satheesh, S. K. et al. A model for the natural and anthropogenic aerosols over the tropical Indian Ocean derived from Indian Ocean Experiment data. J. Geophys. Res. 104, 27421â27440 (1999).
Eck, T. F., Holben, B. N., Slutsker, I. & Setzer, A. Measurements of irradiance attenuation and estimation of aerosol single scattering albedo for biomass burning aerosols in Amazonia. J. Geophys. Res. 103, 31865â31878 (1998).
Dubovik, O. et al. Single-scattering albedo of smoke retrieved from the sky radiance and solar transmittance measured from ground. J. Geophys. Res. 103, 31903â31923 (1998).
Husar, R. B., Prospero, J. M. & Stowe, L. L. Characterization of tropospheric aerosols over the oceans with the NOAA advanced very high resolution radiometer optical thickness operational product. J. Geophys. Res. 102, 16889â16909 (1997).
Houghton, J. T. et al. (eds) Climate Change 1995, The Science of Climate Change (Cambridge University Press, New York, 1996).
Hansen, J., Sato, M., Ruedy, R., Lacis, A. & Oinas, V. Global warming in the twenty-first century: An alternative scenario. Proc. Natl Acad. Sci. 97, 9875â9880 (2000).
Hayhoe, K. et al. Costs of multigreenhouse gas reduction targets for the USA. Science 286, 905â906 (1999).
Acknowledgements
This work was supported by the NASA New Investigator Program, the NSF, the David and Lucile Packard Foundation, and Hewlett-Packard.
Author information
Authors and Affiliations
Corresponding author
Supplementary information
Rights and permissions
About this article
Cite this article
Jacobson, M. Strong radiative heating due to the mixing state of black carbon in atmospheric aerosols. Nature 409, 695â697 (2001). https://doi.org/10.1038/35055518
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1038/35055518
This article is cited by
-
MieAI: a neural network for calculating optical properties of internally mixed aerosol in atmospheric models
npj Climate and Atmospheric Science (2024)
-
The effectiveness of legal framework of Arctic vessel-source black carbon governance
Environmental Science and Pollution Research (2024)
-
The effect of local pollution and transport dust on near surface aerosol properties over a semi-arid station from ground and satellite observations
Air Quality, Atmosphere & Health (2024)
-
Aerosols and black carbon variability using OMI and MERRA-2 and their relationship to near-surface air temperature
Environmental Science and Pollution Research (2024)
-
Particulate Filters for Combustion Engines to Mitigate Global Warming. Estimating the Effects of a Highly Efficient but Underutilized Tool
Emission Control Science and Technology (2024)