Abstract
Imaging studies implicate microtubule targeting of focal adhesions in focal adhesion disassembly, although the molecular mechanism is unknown. Here, we develop a model system of focal adhesion disassembly based on the finding that microtubule regrowth after nocodazole washout induces disassembly of focal adhesions, and that this disassembly occurs independently of Rho and Rac, but depends on focal adhesion kinase (FAK) and dynamin. During disassembly, dynamin interacts with FAK and colocalizes with focal adhesions. Inhibition of dynamin prevents migration of cells with a focal adhesion phenotype. Our results show that focal adhesion disassembly involves microtubules, dynamin and FAK, and is not simply the reversal of focal adhesion formation.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout







Similar content being viewed by others
Accession codes
References
Webb, D.J., Parsons, J.T. & Horwitz, A.F. Adhesion assembly, disassembly and turnover in migrating cells â over and over and over again. Nature Cell Biol. 4, E97âE100 (2002).
Sastry, S.K. & Burridge, K. Focal adhesions: a nexus for intracellular signaling and cytoskeletal dynamics. Exp. Cell Res. 261, 25â36 (2000).
Small, J.V., Stradal, T., Vignal, E. & Rottner, K. The lamellipodium: where motility begins. Trends Cell Biol. 12, 112â120 (2002).
Raftopoulou, M. & Hall, A. Cell migration: Rho GTPases lead the way. Dev. Biol. 265, 23â32 (2004).
Webb, D.J. et al. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nature Cell Biol. 6, 154â161 (2004).
Arthur, W.T., Petch, L.A. & Burridge, K. Integrin engagement suppresses RhoA activity via a c-Src-dependent mechanism. Curr. Biol. 10, 719â722 (2000).
Ren, X.D. et al. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 113, 3673â3678 (2000).
Franco, S.J. et al. Calpain-mediated proteolysis of talin regulates adhesion dynamics. Nature Cell Biol. 6, 977â983 (2004).
Kaverina, I., Krylyshkina, O. & Small, J.V. Microtubule targeting of substrate contacts promotes their relaxation and dissociation. J. Cell Biol. 146, 1033â1044 (1999).
Small, J.V., Geiger, B., Kaverina, I. & Bershadsky, A. How do microtubules guide migrating cells? Nature Rev. Mol. Cell Biol. 3, 957â964 (2002).
Krylyshkina, O. et al. Modulation of substrate adhesion dynamics via microtubule targeting requires kinesin-1. J. Cell Biol. 156, 349â359 (2002).
Bershadsky, A., Chausovsky, A., Becker, E., Lyubimova, A. & Geiger, B. Involvement of microtubules in the control of adhesion-dependent signal transduction. Curr. Biol. 6, 1279â1289 (1996).
Liu, B.P., Chrzanowska-Wodnicka, M. & Burridge, K. Microtubule depolymerization induces stress fibers, focal adhesions, and DNA synthesis via the GTP-binding protein Rho. Cell Adhes. Commun. 5, 249â255 (1998).
Ren, X.D., Kiosses, W.B. & Schwartz, M.A. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 18, 578â585 (1999).
Hauck, C.R., Hsia, D.A. & Schlaepfer, D.D. The focal adhesion kinase â a regulator of cell migration and invasion. IUBMB Life 53, 115â119 (2002).
Smilenov, L.B., Mikhailov, A., Pelham, R.J., Marcantonio, E.E. & Gundersen, G.G. Focal adhesion motility revealed in stationary fibroblasts. Science 286, 1172â1174 (1999).
Krylyshkina, O. et al. Nanometer targeting of microtubules to focal adhesions. J. Cell Biol. 161, 853â859 (2003).
Ory, S., Destaing, O. & Jurdic, P. Microtubule dynamics differentially regulates Rho and Rac activity and triggers Rho-independent stress fiber formation in macrophage polykaryons. Eur. J. Cell Biol. 81, 351â362 (2002).
Cook, T.A., Nagasaki, T. & Gundersen, G.G. Rho guanosine triphosphatase mediates the selective stabilization of microtubules induced by lysophosphatidic acid. J. Cell Biol. 141, 175â185 (1998).
Waterman-Storer, C.M., Worthylake, R.A., Liu, B.P., Burridge, K. & Salmon, E.D. Microtubule growth activates Rac1 to promote lamellipodial protrusion in fibroblasts. Nature Cell Biol. 1, 45â50 (1999).
Sanders, L.C., Matsumura, F., Bokoch, G.M. & de Lanerolle, P. Inhibition of myosin light chain kinase by p21-activated kinase. Science 283, 2083â2085 (1999).
Sander, E.E., ten Klooster, J.P., van Delft, S., van der Kammen, R.A. & Collard, J.G. Rac downregulates Rho activity: reciprocal balance between both GTPases determines cellular morphology and migratory behavior. J. Cell Biol. 147, 1009â1022 (1999).
Sieg, D.J., Hauck, C.R. & Schlaepfer, D.D. Required role of focal adhesion kinase (FAK) for integrin-stimulated cell migration. J. Cell Sci. 112, 2677â2691 (1999).
Schlaepfer, D.D., Hauck, C.R. & Sieg, D.J. Signaling through focal adhesion kinase. Prog. Biophys. Mol. Biol. 71, 435â478 (1999).
Hagel, M. et al. The adaptor protein paxillin is essential for normal development in the mouse and is a critical transducer of fibronectin signaling. Mol. Cell. Biol. 22, 901â915 (2002).
Klinghoffer, R.A., Sachsenmaier, C., Cooper, J.A. & Soriano, P. Src family kinases are required for integrin but not PDGFR signal transduction. EMBO J. 18, 2459â2471 (1999).
Regen, C.M. & Horwitz, A.F. Dynamics of β1 integrin-mediated adhesive contacts in motile fibroblasts. J. Cell Biol. 119, 1347â1359 (1992).
Pierini, L.M., Lawson, M.A., Eddy, R.J., Hendey, B. & Maxfield, F.R. Oriented endocytic recycling of α5β1 in motile neutrophils. Blood 95, 2471â2480 (2000).
Conner, S.D. & Schmid, S.L. Regulated portals of entry into the cell. Nature 422, 37â44 (2003).
Herskovits, J.S., Burgess, C.C., Obar, R.A. & Vallee, R.B. Effects of mutant rat dynamin on endocytosis. J. Cell Biol. 122, 565â578 (1993).
Kreitzer, G., Marmorstein, A., Okamoto, P., Vallee, R. & Rodriguez-Boulan, E. Kinesin and dynamin are required for post-Golgi transport of a plasma-membrane protein. Nature Cell Biol. 2, 125â127 (2000).
Cao, H., Garcia, F. & McNiven, M.A. Differential distribution of dynamin isoforms in mammalian cells. Mol. Biol. Cell 9, 2595â2609 (1998).
Ochoa, G.C. et al. A functional link between dynamin and the actin cytoskeleton at podosomes. J. Cell Biol. 150, 377â389 (2000).
Palazzo, A.F., Eng, C.H., Schlaepfer, D.D., Marcantonio, E.E. & Gundersen, G.G. Localized stabilization of microtubules by integrin- and FAK-facilitated Rho signaling. Science 303, 836â839 (2004).
Chan, P.Y., Kanner, S.B., Whitney, G. & Aruffo, A. A transmembrane-anchored chimeric focal adhesion kinase is constitutively activated and phosphorylated at tyrosine residues identical to pp125FAK. J. Biol. Chem. 269, 20567â20574 (1994).
Herskovits, J.S., Shpetner, H.S., Burgess, C.C. & Vallee, R.B. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Proc. Natl Acad. Sci. USA 90, 11468â11472 (1993).
Schlaepfer, D.D. & Hunter, T. Evidence for in vivo phosphorylation of the Grb2 SH2-domain binding site on focal adhesion kinase by Src-family protein-tyrosine kinases. Mol. Cell. Biol. 16, 5623â5633 (1996).
Kharbanda, S. et al. Stimulation of human monocytes with macrophage colony-stimulating factor induces a Grb2-mediated association of the focal adhesion kinase pp125FAK and dynamin. Proc. Natl Acad. Sci. USA 92, 6132â6136 (1995).
Dujardin, D.L. et al. A role for cytoplasmic dynein and LIS1 in directed cell movement. J. Cell Biol. 163, 1205â1211 (2003).
Maddox, A. & Burridge, K. RhoA is required for cortical retraction and rigidity during mitotic cell rounding. J. Cell Biol. 160, 255â265 (2003).
Schafer, D.A. Regulating actin dynamics at membranes: a focus on dynamin. Traffic 5, 463â469 (2004).
Orth, J.D. & McNiven, M.A. Dynamin at the actin-membrane interface. Curr. Opin. Cell Biol. 15, 31â39 (2003).
Shpetner, H.S. & Vallee, R.B. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Nature 355, 733â735 (1992).
Schlunck, G. et al. Modulation of Rac localization and function by dynamin. Mol. Biol. Cell 15, 256â267 (2004).
Gundersen, G.G., Kim, I. & Chapin, C.J. Induction of stable microtubules in 3T3 fibroblasts by TGF-β and serum. J. Cell Sci. 107, 645â659 (1994).
Kilmartin, J.V., Wright, B. & Milstein, C. Rat monoclonal antitubulin antibodies derived by using a new nonsecreting rat cell line. J. Cell Biol. 93, 576â582 (1982).
Gundersen, G.G., Kalnoski, M.H. & Bulinski, J.C. Distinct populations of microtubules: tyrosinated and nontyrosinated α tubulin are distributed differently in vivo. Cell 38, 779â789 (1984).
Palazzo, A.F., Cook, T.A., Alberts, A.S. & Gundersen, G.G. mDia mediates Rho-regulated formation and orientation of stable microtubules. Nature Cell Biol. 3, 723â729 (2001).
Kranenburg, O., Verlaan, I. & Moolenaar, W. Gi-mediated tyrosine phosphorylation of Grb2(growth-factor-receptor-bound protein 2)-bound dynamin-II by lysophosphatidic acid. Biochem. J. 339, 11â14 (1999).
Mikhailov, A. & Gundersen, G.G. Relationship between microtubule dynamics and lamellipodium formation revealed by direct imaging of microtubules in cells treated with nocodazole or taxol. Cell Motil. Cytoskeleton 41, 325â440 (1998).
Acknowledgements
We thank the members of the laboratory, and E. Marcantonio and R. Vallee for critically reading the manuscript. We are indebted to R. Vallee for dynamin constructs and antibodies. Supported by NIH grant GM68595 (G.G.G.).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary information
Supplementary figures S1, S2 and S3 (PDF 1107 kb)
Rights and permissions
About this article
Cite this article
Ezratty, E., Partridge, M. & Gundersen, G. Microtubule-induced focal adhesion disassembly is mediated by dynamin and focal adhesion kinase. Nat Cell Biol 7, 581â590 (2005). https://doi.org/10.1038/ncb1262
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ncb1262