Abstract
Topological insulators (TI) are becoming one of the most studied classes of novel materials because of their great potential for applications ranging from spintronics to quantum computers. To fully integrate TI materials in electronic devices, high-quality epitaxial single-crystalline phases with sufficiently large bulk bandgaps are necessary. Current efforts have relied mostly on costly and time-consuming trial-and-error procedures. Here we show that by defining a reliable and accessible descriptor , which represents the topological robustness or feasibility of the candidate, and by searching the quantum materials repository aflowlib.org, we have automatically discovered 28âTIs (some of them already known) in five different symmetry families. These include peculiar ternary halides, Cs{Sn,Pb,Ge}{Cl,Br,I}3, which could have been hardly anticipated without high-throughput means. Our search model, by relying on the significance of repositories in materials development, opens new avenues for the discovery of more TIs in different and unexplored classes of systems.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout


Similar content being viewed by others
References
Hsieh, D. et al. A topological Dirac insulator in a quantum spin Hall phase. Nature 452, 970â974 (2008).
Kane, C. L. & Moore, J. E. Topological insulators. Phys. World 24, 32â36 (February, 2011).
Moore, J. E. The birth of topological insulators. Nature 464, 194â198 (2010).
Moore, J. E. Topological insulators: The next generation. Nature Phys. 5, 378â380 (2009).
Hasan, M. Z. & Kane, C. L. Colloquium: Topological insulators. Rev. Mod. Phys. 82, 3045â3067 (2010).
Chen, Y. L. et al. Experimental realization of a three-dimensional topological insulator, Bi2Te3 . Science 325, 178â181 (2009).
Zhang, T. et al. Experimental demonstration of topological surface states protected by time-reversal symmetry. Phys. Rev. Lett. 103, 266803 (2009).
Xia, Y. et al. Observation of a large-gap topological-insulator class with a single Dirac cone on the surface. Nature Phys. 5, 398â402 (2009).
Kuroda, K. et al. Hexagonally deformed Fermi surface of the 3D topological insulator Bi2Se3 . Phys. Rev. Lett. 105, 076802 (2010).
Chen, Y. L. et al. Single Dirac cone topological surface state and unusual thermoelectric property of compounds from a new topological insulator family. Phys. Rev. Lett. 105, 266401 (2010).
Sato, T. et al. Direct evidence for the Dirac-cone topological surface states in the ternary chalcogenide TlBiSe2 . Phys. Rev. Lett. 105, 136802 (2010).
Kuroda, K. et al. Experimental realization of a three-dimensional topological insulator phase in ternary chalcogenide TlBiSe2 . Phys. Rev. Lett. 105, 146801 (2010).
Arakane, T. et al. Tunable Dirac cone in the topological insulator Bi2âxSbxTe3âySey . Nature Commun. 3, 636 (2012).
Xu, S-Y. et al. Discovery of several large families of topological insulator classes with backscattering-suppressed spin-polarized single-dirac-cone on the surface. Preprint at http://arxiv.org/abs/1007.5111v1 (2010).
Souma, S. et al. Topological surface states in lead-based ternary telluride Pb(Bi1âxSbx)2Te4 . Phys. Rev. Lett. 108, 116801 (2012).
Eremeev, S. V. et al. Atom-specific spin mapping and buried topological states in a homologous series of topological insulators. Nature Commun. 3, 635 (2012).
Chadov, S. et al. Tunable multifunctional topological insulators in ternary Heusler compounds. Nature Mater. 9, 541â545 (2010).
Lin, H. et al. Half-Heusler ternary compounds as new multifunctional experimental platforms for topological quantum phenomena. Nature Mater. 9, 546â549 (2010).
Xiao, D. et al. Half-Heusler compounds as a new class of three-dimensional topological insulators. Phys. Rev. Lett. 105, 096404 (2010).
Sun, Y., Chen, X-Q., Yunoki, S., Li, D. & Li, Y. New family of three-dimensional topological insulators with antiperovskite structure. Phys. Rev. Lett. 105, 216406 (2010).
Zhang, H-J. et al. Topological insulators in ternary compounds with a honeycomb lattice. Phys. Rev. Lett. 106, 156402 (2011).
Feng, W., Xiao, D., Ding, J. & Yao, Y. Three-dimensional topological insulators in IâIIIâVI2 and IIâIVâV2 chalcopyrite semiconductors. Phys. Rev. Lett. 106, 016402 (2011).
Jin, H., Song, J-H., Freeman, A. J. & Kanatzidis, M. G. Candidates for topological insulators: Pb-based chalcogenide series. Phys. Rev. B 83, 041202 (2011).
Fu, L., Kane, C. L. & Mele, E. J. Topological insulators in three dimensions. Phys. Rev. Lett. 98, 106803 (2007).
Winkler, R. in Spinâorbit Coupling Effects in Two-Dimensional Electron and Hole Systems Vol. 191 (Springer Tracts in Modern Physics, Springer, 2003).
Luo, J-W. & Zunger, A. Design principles and coupling mechanisms in the 2D quantum well topological insulator HgTe/CdTe. Phys. Rev. Lett. 105, 176805 (2010).
Xu, S-Y. et al. Topological phase transition and texture inversion in a tunable topological insulator. Science 332, 560â564 (2011).
Curtarolo, S. et al. AFLOWLIB.ORG: A distributed materials properties repository from high-throughput ab initio calculations. Comput. Mater. Sci. 58, 227â235 (2012).
Setyawan, W., Gaume, R. M., Lam, S., Feigelson, R. S. & Curtarolo, S. High-throughput combinatorial database of electronic band structures for inorganic scintillator materials. ACS Comb. Sci. 13, 382â390 (2011).
Wang, S., Wang, Z., Setyawan, W., Mingo, N. & Curtarolo, S. Assessing the thermoelectric properties of sintered compounds via high-throughput ab-initio calculations. Phys. Rev. X 1, 021012 (2011).
Bergerhoff, G., Hundt, R., Sievers, R. & Brown, I. D. The inorganic crystal structure data base. J. Chem. Inf. Comput. Sci. 23, 66â69 (1983).
Moon, C-Y. & Wei, S-H. Band gap of Hg chalcogenides: Symmetry-reduction-induced band-gap opening of materials with inverted band structures. Phys. Rev. B 74, 045205 (2006).
Welber, B., Cardona, M., Kim, C. K. & Rodriguez, S. Dependence of the direct energy gap of GaAs on hydrostatic pressure. Phys. Rev. B 12, 5729â5738 (1975).
Wang, S. Q. & Ye, H. Q. A plane-wave pseudopotential study on IIIâV zinc-blende and wurtzite semiconductors under pressure. J. Phys. Condens. Matter. 14, 9579â9587 (2002).
Knittle, E. & Jeanloz, R. Structural and bonding changes in cesium iodide at high pressures. Science 223, 53â56 (1984).
Nabi, Z., Abbar, B., Méçabih, S., Khalfi, A. & Amrane, N. Pressure dependence of band gaps in PbS, PbSe and PbTe. Comput. Mater. Sci. 18, 127â131 (2000).
Pettifor, D. G. A chemical scale for crystal-structure maps. Solid State Commun. 51, 31â34 (1984).
Pettifor, D. G. The structures of binary compounds. I. Phenomenological structure maps. J. Phys. C 19, 285â313 (1986).
Setyawan, W. & Curtarolo, S. High-throughput electronic band structure calculations: Challenges and tools. Comput. Mater. Sci. 49, 299â312 (2010).
Curtarolo, S. et al. AFLOW: An automatic framework for high-throughput materials discovery. Comput. Mater. Sci. 58, 218â226 (2012).
Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169â11186 (1996).
Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953â17979 (1994).
Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865â3868 (1996).
Vidal, J., Zhang, X., Yu, L., Luo, J-W. & Zunger, A. False-positive and false-negative assignments of topological insulators in density functional theory and hybrids. Phys. Rev. B 84, 041109 (2011).
Frumar, M., Tichý, L., Horák, J. & Klikorka, J. Preparation and some physical properties of semiconducting GeSb2Te4 crystals. Mater. Res. Bull. 7, 1075â1085 (1972).
Zhukova, T. B. & Zaslavskii, A. I. Crystal Structures of PbBi4Te7, PbBi2Te4, SnBi4Te7, SnBi2Te4, SnSb2Te4,and GeBi4Te7 . Kristallografiya 16, 918â922 (1971).
Karpinskii, O. G., Shelimova, L. E., Avilov, E. S., Kretova, M. A. & Zemskov, V. S. X-ray diffraction study of mixed-layer compounds in the PbTe-Bi2Te3 system. Inorg. Chem. 38, 17â24 (2002).
Agaev, K. A. & Semiletov, S. A. Electron-diffraction study of the structure of PbBi2Se4 . Kristallografiya 13, 258â260 (1968).
Imamov, R. M., Semiletov, S. A. & Pinsker, Z. G. Crystal-chemical aspects of octahedral and mixed coordination semiconductors. Kristallografiya 15, 287â293 (1970).
Karpinskii, O. G., Shelimova, L. E., Kretova, M. A., Avilov, E. S. & Zemskov, V. S. X-ray diffraction study of mixed-layer compounds in the pseudobinary system SnTe-Bi2Te3 . Inorg. Chem. 39, 240â246 (2003).
Imamov, R. M., Semiletov, S. A. & Pinsker, Z. G. The crystal chemistry of semiconductors with octradral and with mixed atomic coordination. Kristallografiya 15, 239â243 (1970).
Shelimova, L. E. et al. Synthesis and structure of layered compounds in the PbTe-Bi2Te3 and PbTe-Sb2Te3 systems. Inorg. Chem. 40, 1264â1270 (2004).
Acknowledgements
Research supported by the Office of Naval Research (ONR) (N00014-11-1-0136, N00014-10-1-0436) and National Science Foundation (NSF) (DMR-0639822). M.B.N. acknowledges partial support from the Office of Basic Energy Sciences, Department of Energy (DOE) at Oak Ridge National Laboratory (ORNL) under contract DE-AC05-00OR22725 with UT-Battelle, LLC. Computational resources provided by Teragrid (MCA-07S005) and by the Center for Nanophase Materials Sciences at ORNL (CNMS2010-206). The authors acknowledge fruitful discussions with J. Liu, J. Terry and M. Fornari.
Author information
Authors and Affiliations
Contributions
S.C. and W.S. developed the AFLOW framework. W.S., S.W. and S.C. developed the online materials repository aflowlib.org. K.Y. extended AFLOW to spinâorbit-coupling and topological insulator calculations. K.Y. performed the calculations. M.B.N. and S.C. provided guidance for the analysis completed by K.Y. and S.W. S.C. supervised the project. S.C. and M.B.N. wrote the article. All authors contributed to the revision of the article and to the discussion of the results.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 361 kb)
Rights and permissions
About this article
Cite this article
Yang, K., Setyawan, W., Wang, S. et al. A search model for topological insulators with high-throughput robustness descriptors. Nature Mater 11, 614â619 (2012). https://doi.org/10.1038/nmat3332
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/nmat3332
This article is cited by
-
Structural, mechanical, electronic, optical, and thermoelectric analysis of cubic-tetragonal halide perovskites CsGeX3 (Xâ=âCl, Br, I)
Indian Journal of Physics (2024)
-
Direct observation of cation diffusion driven surface reconstruction at van der Waals gaps
Nature Communications (2023)
-
Cesium-mediated electron redistribution and electron-electron interaction in high-pressure metallic CsPbI3
Nature Communications (2022)
-
Electronic and optical properties of bulk and surface of CsPbBr3 inorganic halide perovskite a first principles DFT 1/2 approach
Scientific Reports (2021)
-
Robust half-metallicity and magnetic phase transition in Sr2CrReO6 via strain engineering
Scientific Reports (2020)