Abstract
Given a graph G=(V,E) with |V|=n, we consider the following problem. Place n points on the vertices of G independently and uniformly at random. Once the points are placed, relocate them using a bijection from the points to the vertices that minimizes the maximum distance between the random place of the points and their target vertices.
We look for an upper bound on this maximum relocation distance that holds with high probability (over the initial placements of the points).
For general graphs, we prove the #P-hardness of the problem and that the maximum relocation distance is \(O(\sqrt{n})\) with high probability. We also present a Fully Polynomial Randomized Approximation Scheme when the input graph admits a polynomial-size family of witness cuts while for trees we provide a 2-approximation algorithm.
The research was partially funded by the European project IST FET AEOLUS and by the European COST Action 293, “Graphs and Algorithms in Communication Networks” (GRAAL).
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Leighton, F.T., Shor, P.W.: Tight bounds for minimax grid matching with applications to the average case analysis of algorithms. Combinatorica 9, 161–187 (1989)
Shor, P.W.: The average-case analysis of some on-line algorithms for bin packing. Combinatorica 6, 179–200 (1986)
Shor, P.W., Yukich, J.E.: Minimax grid matching and empirical measures. The Annals of Probability 19, 1338–1348 (1991)
Cole, R., Frieze, A.M., Maggs, B.M., Mitzenmacher, M., Richa, A.W., Sitaraman, R.K., Upfal, E.: On balls and bins with deletions. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 145–158. Springer, Heidelberg (1998)
Drinea, E., Frieze, A., Mitzenmacher, M.: Balls and bins models with feedback. In: Proc. of the 13th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pp. 308–315 (2002)
Iwama, K., Kawachi, A.: Approximated two choices in randomized load balancing. In: Fleischer, R., Trippen, G. (eds.) ISAAC 2004. LNCS, vol. 3341, pp. 545–557. Springer, Heidelberg (2004)
Raab, M., Steger, A.: Balls into bins - a simple and tight analysis. In: Rolim, J.D.P., Serna, M., Luby, M. (eds.) RANDOM 1998. LNCS, vol. 1518, pp. 159–170. Springer, Heidelberg (1998)
Chazelle, B.: The Discrepancy Method Randomness and Complexity. Cambridge University Press, Cambridge (2002)
Dudenhoeffer, D.D., Jones, M.P.: A formation behavior for large-scale micro-robot force deployment. In: Proc. of the 32nd Conference on Winter Simulation, pp. 972–982 (2000)
Gobriel, S., Melhem, R., Mosse, D.: A unified interference/collision analysis for power-aware adhoc networks. In: Proc. of the 23rd Conference of the IEEE Communications Society (2004)
Banez, J.M.D., Hurtado, F., Lopez, M.A., Sellares, J.A.: Optimal point set projections onto regular grids. In: Ibaraki, T., Katoh, N., Ono, H. (eds.) ISAAC 2003. LNCS, vol. 2906, pp. 270–279. Springer, Heidelberg (2003)
Indyk, P., Motwani, R., Venkatasubramanian, S.: Geometric matching under noise: combinatorial bounds and algorithms. In: Proc. of the 10th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 457–465 (1999)
Meyer, F., Oesterdiekhoff, B., Wanka, R.: Strongly adaptive token distribution. Algorithmica 15, 413–427 (1993)
Peleg, D., Upfal, E.: The token distribution problem. SIAM J. Comput. 18, 229–243 (1989)
Mitzenmacher, M., Prabhakar, B., Shah, D.: Load balancing with memory. In: Proc. of the 43rd Annual IEEE Symposium on Foundations of Computer Science (FOCS), pp. 799–808 (2002)
Diestel, R.: Graph Theory, 2nd edn. Springer, New York (2000)
Karp, R.M., Luby, M.G.: Monte carlo algorithms for planar multiterminal network reliability problems. Journal of Complexity 1, 45–64 (1985)
Karger, D.R.: A randomized fully polynomial time approximation scheme for the all-terminal network reliability problem. SIAM Journal on Computing 29, 492–514 (2000)
Vazirani, V.: Approximation Algorithms. Springer, Heidelberg (2001)
Karaganis, J.J.: On the cube of a graph. Canad. Math. Bull. 11, 295–296 (1969)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Klasing, R., Lotker, Z., Navarra, A., Perennes, S. (2005). From Balls and Bins to Points and Vertices. In: Deng, X., Du, DZ. (eds) Algorithms and Computation. ISAAC 2005. Lecture Notes in Computer Science, vol 3827. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11602613_76
Download citation
DOI: https://doi.org/10.1007/11602613_76
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-30935-2
Online ISBN: 978-3-540-32426-3
eBook Packages: Computer ScienceComputer Science (R0)