Abstract
Earthâs climate sensitivity has long been subject to heated debate and has spurred renewed interest after the latest IPCC assessment report suggested a downward adjustment of its most likely range1. Recent observational studies have produced estimates of transient climate sensitivity, that is, the global mean surface temperature increase at the time of CO2 doubling, as low as 1.3âK (refs 2,3), well below the best estimate produced by global climate models (1.8âK). Here, we present an observation-based study of the time period 1964 to 2010, which does not rely on climate models. The method incorporates observations of greenhouse gas concentrations, temperature and radiation from approximately 1,300 surface sites into an energy balance framework. Statistical methods commonly applied to economic time series are then used to decompose observed temperature trends into components attributable to changes in greenhouse gas concentrations and surface radiation. We find that surface radiation trends, which have been largely explained by changes in atmospheric aerosol loading, caused a cooling that masked approximately one-third of the continental warming due to increasing greenhouse gas concentrations over the past half-century. In consequence, the method yields a higher transient climate sensitivity (2.0 ± 0.8âK) than other observational studies.
This is a preview of subscription content, access via your institution
Access options
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Buy this article
- Purchase on SpringerLink
- Instant access to full article PDF
Prices may be subject to local taxes which are calculated during checkout



Similar content being viewed by others
References
Collins, M. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 12, 1029â1136 (IPCC, Cambridge Univ. Press, 2013).
Otto, A. et al. Energy budget constraints on climate response. Nature Geosci. 6, 415â416 (2013).
Lewis, N. & Curry, J. The implications for climate sensitivity of AR5 forcing and heat uptake estimates. Clim. Dynam. 45, 1009â1023 (2015).
Allen, M. R. & Frame, D. J. Call off the quest. Science 318, 582â583 (2007).
Padilla, L. E., Vallis, G. K. & Rowley, C. W. Probabilistic estimates of transient climate sensitivity subject to uncertainty in forcing and natural variability. J. Clim. 24, 5521â5537 (2011).
Wild, M. Enlightening global dimming and brightening. Bull. Am. Meteorol. Soc. 93, 27â37 (2012).
Wild, M. Global dimming and brightening: a review. J. Geophys. Res. 114, D00D16 (2009).
Myhre, G. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 8, 659â740 (IPCC, Cambridge Univ. Press, 2013).
Norris, J. R. & Wild, M. Trends in aerosol radiative effects over Europe inferred from observed cloud cover, solar âdimmingâ and solar âbrighteningâ. J. Geophys. Res. 112, D08214 (2007).
Andreae, M. O., Jones, C. D. & Cox, P. M. Strong present-day aerosol cooling implies a hot future. Nature 435, 1187â1190 (2005).
Lohmann, U. et al. Total aerosol effect: radiative forcing or radiative flux perturbation? Atmos. Chem. Phys. 10, 3235â3246 (2010).
Kiehl, J. T. Twentieth century climate model response and climate sensitivity. Geophys. Res. Lett. 34, L22710 (2007).
Harris, I., Jones, P. D., Osborn, T. J. & Lister, D. H. Updated high-resolution grids of monthly climatic observationsâthe CRU TS3.10 Dataset. Int. J. Climatol. 34, 623â642 (2014).
Hofmann, D. J. et al. The role of carbon dioxide in climate forcing from 1979 to 2004: introduction of the Annual Greenhouse Gas Index. Tellus B 58, 614â619 (2006).
Gilgen, H. & Ohmura, A. The global energy balance archive. Bull. Am. Meteorol. Soc. 80, 831â850 (1999).
Arellano, M. & Bond, S. Some tests of specification for panel dataâMonte-Carlo evidence and an application to employment equations. Rev. Econ. Stud. 58, 277â297 (1991).
Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Reconciling anthropogenic climate change with observed temperature 1998â2008. Proc. Natl Acad. Sci. USA 108, 11790â11793 (2011).
Bindoff, N. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 10, 867â952 (IPCC, Cambridge Univ. Press, 2013).
Wild, M., Ohmura, A. & Makowski, K. Impact of global dimming and brightening on global warming. Geophys. Res. Lett. 34, L04702 (2007).
Shindell, D. T. Inhomogeneous forcing and transient climate sensitivity. Nature Clim. Change 4, 274â277 (2014).
Hartmann, D. L. et al. in Climate Change 2013: The Physical Science Basis (eds Stocker, T. F. et al.) Ch. 2, 159â254 (IPCC, Cambridge Univ. Press, 2013).
Meinshausen, M. et al. Greenhouse-gas emission targets for limiting global warming to 2 degrees C. Nature 458, 1158âU1196 (2009).
Rogelj, J. et al. Energy system transformations for limiting end-of-century warming to below 1.5 degrees C. Nature Clim. Change 5, 519â527 (2015).
Meehl, G. A., Arblaster, J. M., Fasullo, J. T., Hu, A. X. & Trenberth, K. E. Model-based evidence of deep-ocean heat uptake during surface-temperature hiatus periods. Nature Clim. Change 1, 360â364 (2011).
Santer, B. D. et al. Volcanic contribution to decadal changes in tropospheric temperature. Nature Geosci. 7, 185â189 (2014).
Skeie, R. B., Berntsen, T., Aldrin, M., Holden, M. & Myhre, G. A lower and more constrained estimate of climate sensitivity using updated observations and detailed radiative forcing time series. Earth Syst. Dynam. 5, 139â175 (2014).
Kosaka, Y. & Xie, S. P. Recent global-warming hiatus tied to equatorial Pacific surface cooling. Nature 501, 403â407 (2013).
Klimont, Z., Smith, S. J. & Cofala, J. The last decade of global anthropogenic sulfur dioxide: 2000â2011 emissions. Environ. Res. Lett. 8, 014003 (2013).
Smith, S. J. et al. Anthropogenic sulfur dioxide emissions: 1850â2005. Atmos. Chem. Phys. 11, 1101â1116 (2011).
Magnus, J. R., Melenberg, B. & Muris, C. Global warming and local dimming: the statistical evidence. J. Am. Stat. Assoc. 106, 452â464 (2011).
Phillips, P. C. B. Halbert White Jr. Memorial JFEC Lecture: pitfalls and possibilities in predictive regression. J. Financ. Economet. 13, 521â555 (2015).
Phillips, P. C. B. Time-series regression with a unit-root. Econometrica 55, 277â301 (1987).
Kaufmann, R. K., Kauppi, H. & Stock, J. H. Emissions, concentrations, temperature: a time series analysis. Climatic Change 77, 249â278 (2006).
Kaufmann, R. K., Kauppi, H. & Stock, J. H. The relationship between radiative forcing and temperature: what do statistical analyses of the instrumental temperature record measure? Climatic Change 77, 279â289 (2006).
Said, S. E. & Dickey, D. A. Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika 71, 599â607 (1984).
Phillips, P. C. B. & Perron, P. Testing for a unit-root in time-series regression. Biometrika 75, 335â346 (1988).
Kwiatkowski, D., Phillips, P. C. B. & Schmidt, P. Testing for stationarity in the components representation of a time-series. Economet. Theor. 8, 586â591 (1992).
Engle, R. F. & Granger, C. W. J. Cointegration and error correctionârepresentation, estimation, and testing. Econometrica 55, 251â276 (1987).
Phillips, P. C. B. & Moon, H. R. Linear regression limit theory for nonstationary panel data. Econometrica 67, 1057â1111 (1999).
Phillips, P. C. B. & Ouliaris, S. Asymptotic properties of residual based tests for cointegration. Econometrica 58, 165â193 (1990).
Mackinnon, J. G. Approximate asymptotic-distribution functions for unit-root and cointegration tests. J. Bus. Econ. Stat. 12, 167â176 (1994).
Kaufmann, R. K., Kauppi, H., Mann, M. L. & Stock, J. H. Does temperature contain a stochastic trend: linking statistical results to physical mechanisms. Climatic Change 118, 729â743 (2013).
Schneider, T., Bischoff, T. & Haug, G. H. Migrations and dynamics of the intertropical convergence zone. Nature 513, 45â53 (2014).
Phillips, P. C. B. & Loretan, M. Estimating long-run economic equilibria. Rev. Econ. Stud. 58, 407â436 (1991).
Saikkonen, P. Asymptotically efficient estimation of cointegration regressions. Economet. Theor. 7, 1â21 (1991).
Stock, J. H. & Watson, M. W. A simple estimator of cointegrating vectors in higher-order integrated systems. Econometrica 61, 783â820 (1993).
Acknowledgements
This research was supported by an interdisciplinary seed grant awarded by the Yale Climate and Energy Institute (YCEI). P.C.B.P. acknowledges research support from the NSF under Grant No. SES 1258258.
Author information
Authors and Affiliations
Contributions
T.S. and P.C.B.P. designed the project. T.L. performed data quality checks and all technical analysis. M.W. and U.L. contributed data and helped with interpretation. T.S. and P.C.B.P. wrote the paper with contributions from all co-authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing financial interests.
Supplementary information
Supplementary Information
Supplementary Information (PDF 183 kb)
Rights and permissions
About this article
Cite this article
Storelvmo, T., Leirvik, T., Lohmann, U. et al. Disentangling greenhouse warming and aerosol cooling to reveal Earthâs climate sensitivity. Nature Geosci 9, 286â289 (2016). https://doi.org/10.1038/ngeo2670
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/ngeo2670
This article is cited by
-
An empirical estimate for the snow albedo feedback effect
Climatic Change (2023)
-
CO2, SO2 and economic growth: a cross-national panel study
Journal of Economics and Finance (2023)
-
Could detection and attribution of climate change trends be spurious regression?
Climate Dynamics (2022)
-
20th century cooling of the deep ocean contributed to delayed acceleration of Earthâs energy imbalance
Nature Communications (2021)
-
Dirty air offsets inequality
Nature Climate Change (2020)