Description
Hello,
Thank you for your great work.
I am currently running the Oneformer with a customized dataset for unified image segmentation. I encountered two issues in fact.
- When enabling the AMP, the model training has the NaN error. If it is disabled, the model can be trained without any errors reported.
- On a custome dataset, where only 1 class belongs to "thing" class (building), the AP is low to under 10%, and the mIoU is higher than 60%. Here are some training log information attached below.
I arranged my dataset into COCO format and directrly use COCO dataset mapper and registry function.
[03/31 17:39:39 oneformer.evaluation.coco_evaluator]: Evaluating predictions with unofficial COCO API...
Loading and preparing results...
DONE (t=0.45s)
creating index...
index created!
[03/31 17:39:40 d2.evaluation.fast_eval_api]: Evaluate annotation type segm
[03/31 17:39:41 d2.evaluation.fast_eval_api]: COCOeval_opt.evaluate() finished in 0.80 seconds.
[03/31 17:39:41 d2.evaluation.fast_eval_api]: Accumulating evaluation results...
[03/31 17:39:41 d2.evaluation.fast_eval_api]: COCOeval_opt.accumulate() finished in 0.07 seconds.
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.061
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.011
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.006
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.023
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.032
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.005
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.025
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.042
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.019
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.045
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.051
[03/31 17:39:41 oneformer.evaluation.coco_evaluator]: Evaluation results for segm:
[03/31 17:39:42 d2.evaluation.sem_seg_evaluation]: OrderedDict([('sem_seg', {'mIoU': 60.20418008168539, 'fwIoU': 64.45364952087402, 'IoU-building': 79.00359034538269, 'IoU-road': 64.76172804832458, 'IoU-water': 68.51374506950378, 'IoU-barren': 27.051246166229248, 'IoU-forest': 54.615336656570435, 'IoU-agriculture': 67.27946996688843, 'mACC': 75.01688798268637, 'pACC': 77.73436903953552, 'ACC-building': 88.89179229736328, 'ACC-road': 75.64088106155396, 'ACC-water': 91.73657298088074, 'ACC-barren': 39.59067761898041, 'ACC-forest': 79.11878228187561, 'ACC-agriculture': 75.12264251708984})])
[03/31 17:39:42 d2.evaluation.testing]: copypaste: Task: panoptic_seg
[03/31 17:39:42 d2.evaluation.testing]: copypaste: PQ,SQ,RQ,PQ_th,SQ_th,RQ_th,PQ_st,SQ_st,RQ_st
[03/31 17:39:42 d2.evaluation.testing]: copypaste: 1099.6590,2251.9732,52.7991,49.5542,80.5105,61.5500,1309.6799,2686.2657,51.0490
[03/31 17:39:42 d2.evaluation.testing]: copypaste: Task: segm
[03/31 17:39:42 d2.evaluation.testing]: copypaste: AP,AP50,AP75,APs,APm,APl
[03/31 17:39:42 d2.evaluation.testing]: copypaste: 2.2837,6.1118,1.1393,0.5980,2.3482,3.1830
[03/31 17:39:42 d2.evaluation.testing]: copypaste: Task: sem_seg
[03/31 17:39:42 d2.evaluation.testing]: copypaste: mIoU,fwIoU,mACC,pACC
[03/31 17:39:42 d2.evaluation.testing]: copypaste: 60.2042,64.4536,75.0169,77.7344