|
| 1 | +import pandas as pd |
| 2 | + |
| 3 | + |
| 4 | +def perf_attrib(returns, |
| 5 | + positions, |
| 6 | + factor_returns, |
| 7 | + factor_loadings): |
| 8 | + """ |
| 9 | + Attributes the performance of a returns stream to a set of risk factors. |
| 10 | +
|
| 11 | + Performance attribution determines how much each risk factor, e.g., |
| 12 | + momentum, the technology sector, etc., contributed to total returns, as |
| 13 | + well as the daily exposure to each of the risk factors. The returns that |
| 14 | + can be attributed to one of the given risk factors are the |
| 15 | + `common_returns`, and the returns that _cannot_ be attributed to a risk |
| 16 | + factor are the `specific_returns`. The `common_returns` and |
| 17 | + `specific_returns` summed together will always equal the total returns. |
| 18 | +
|
| 19 | + Parameters |
| 20 | + ---------- |
| 21 | + returns : pd.Series |
| 22 | + Returns for each day in the date range. |
| 23 | + - Example: |
| 24 | + 2017-01-01 -0.017098 |
| 25 | + 2017-01-02 0.002683 |
| 26 | + 2017-01-03 -0.008669 |
| 27 | +
|
| 28 | + positions: pd.Series |
| 29 | + Daily holdings in percentages, indexed by date. |
| 30 | + - Examples: |
| 31 | + dt ticker |
| 32 | + 2017-01-01 AAPL 0.417582 |
| 33 | + TLT 0.010989 |
| 34 | + XOM 0.571429 |
| 35 | + 2017-01-02 AAPL 0.202381 |
| 36 | + TLT 0.535714 |
| 37 | + XOM 0.261905 |
| 38 | +
|
| 39 | + factor_returns : pd.DataFrame |
| 40 | + Returns by factor, with date as index and factors as columns |
| 41 | + - Example: |
| 42 | + momentum reversal |
| 43 | + 2017-01-01 0.002779 -0.005453 |
| 44 | + 2017-01-02 0.001096 0.010290 |
| 45 | +
|
| 46 | + factor_loadings : pd.DataFrame |
| 47 | + Factor loadings for all days in the date range, with date and ticker as |
| 48 | + index, and factors as columns. |
| 49 | + - Example: |
| 50 | + momentum reversal |
| 51 | + dt ticker |
| 52 | + 2017-01-01 AAPL -1.592914 0.852830 |
| 53 | + TLT 0.184864 0.895534 |
| 54 | + XOM 0.993160 1.149353 |
| 55 | + 2017-01-02 AAPL -0.140009 -0.524952 |
| 56 | + TLT -1.066978 0.185435 |
| 57 | + XOM -1.798401 0.761549 |
| 58 | +
|
| 59 | + Returns |
| 60 | + ------- |
| 61 | + tuple of (risk_exposures_portfolio, perf_attribution) |
| 62 | +
|
| 63 | + risk_exposures_portfolio : pd.DataFrame |
| 64 | + df indexed by datetime, with factors as columns |
| 65 | + - Example: |
| 66 | + momentum reversal |
| 67 | + dt |
| 68 | + 2017-01-01 -0.238655 0.077123 |
| 69 | + 2017-01-02 0.821872 1.520515 |
| 70 | +
|
| 71 | + perf_attribution : pd.DataFrame |
| 72 | + df with factors, common returns, and specific returns as columns, |
| 73 | + and datetimes as index |
| 74 | + - Example: |
| 75 | + momentum reversal common_returns specific_returns |
| 76 | + dt |
| 77 | + 2017-01-01 0.249087 0.935925 1.185012 1.185012 |
| 78 | + 2017-01-02 -0.003194 -0.400786 -0.403980 -0.403980 |
| 79 | +
|
| 80 | + Note |
| 81 | + ---- |
| 82 | + See https://en.wikipedia.org/wiki/Performance_attribution for more details. |
| 83 | + """ |
| 84 | + risk_exposures_portfolio = compute_exposures(positions, |
| 85 | + factor_loadings) |
| 86 | + |
| 87 | + perf_attrib_by_factor = risk_exposures_portfolio.multiply(factor_returns) |
| 88 | + |
| 89 | + common_returns = perf_attrib_by_factor.sum(axis='columns') |
| 90 | + specific_returns = returns - common_returns |
| 91 | + |
| 92 | + returns_df = pd.DataFrame({'total_returns': returns, |
| 93 | + 'common_returns': common_returns, |
| 94 | + 'specific_returns': specific_returns}) |
| 95 | + |
| 96 | + return (risk_exposures_portfolio, |
| 97 | + pd.concat([perf_attrib_by_factor, returns_df], axis='columns')) |
| 98 | + |
| 99 | + |
| 100 | +def compute_exposures(positions, factor_loadings): |
| 101 | + """ |
| 102 | + Compute daily risk factor exposures. |
| 103 | +
|
| 104 | + Parameters |
| 105 | + ---------- |
| 106 | + positions: pd.Series |
| 107 | + A series of holdings as percentages indexed by date and ticker. |
| 108 | + - Examples: |
| 109 | + dt ticker |
| 110 | + 2017-01-01 AAPL 0.417582 |
| 111 | + TLT 0.010989 |
| 112 | + XOM 0.571429 |
| 113 | + 2017-01-02 AAPL 0.202381 |
| 114 | + TLT 0.535714 |
| 115 | + XOM 0.261905 |
| 116 | +
|
| 117 | + factor_loadings : pd.DataFrame |
| 118 | + Factor loadings for all days in the date range, with date and ticker as |
| 119 | + index, and factors as columns. |
| 120 | + - Example: |
| 121 | + momentum reversal |
| 122 | + dt ticker |
| 123 | + 2017-01-01 AAPL -1.592914 0.852830 |
| 124 | + TLT 0.184864 0.895534 |
| 125 | + XOM 0.993160 1.149353 |
| 126 | + 2017-01-02 AAPL -0.140009 -0.524952 |
| 127 | + TLT -1.066978 0.185435 |
| 128 | + XOM -1.798401 0.761549 |
| 129 | +
|
| 130 | + Returns |
| 131 | + ------- |
| 132 | + risk_exposures_portfolio : pd.DataFrame |
| 133 | + df indexed by datetime, with factors as columns |
| 134 | + - Example: |
| 135 | + momentum reversal |
| 136 | + dt |
| 137 | + 2017-01-01 -0.238655 0.077123 |
| 138 | + 2017-01-02 0.821872 1.520515 |
| 139 | + """ |
| 140 | + risk_exposures = factor_loadings.multiply(positions, axis='rows') |
| 141 | + return risk_exposures.groupby(level='dt').sum() |
0 commit comments