Open
Description
I'm getting high memor usage (started ad 12 GB and the error occured at 18 GB):
I'm using intel tensorflow plugin on intel iris Xe GPU
ERROR:
ResourceExhaustedError Traceback (most recent call last)
Cell In[7], line 89
86 printlogcallback = tf.keras.callbacks.LambdaCallback(on_batch_end=printlog)
88 # treina o modelo
---> 89 History = fold_model.fit(
90 train_generator_fold,
91 batch_size = batch_size,
92 epochs = epochs,
93 callbacks=[printlogcallback],
94 validation_data = (val_generator_fold),
95 verbose = 1 # mostra a barra de progresso
96 )
98 # Suponha que 'model' é o seu modelo treinado
99 save_model(fold_model, f'./modelos_h5/{key}_fold{fold+1}_batches{batch_size}_epochs{epochs}.h5')
File ~\.conda\envs\directml\lib\site-packages\keras\utils\traceback_utils.py:70, in filter_traceback.<locals>.error_handler(*args, **kwargs)
67 filtered_tb = _process_traceback_frames(e.__traceback__)
68 # To get the full stack trace, call:
69 # `tf.debugging.disable_traceback_filtering()`
---> 70 raise e.with_traceback(filtered_tb) from None
71 finally:
72 del filtered_tb
File ~\.conda\envs\directml\lib\site-packages\tensorflow\python\eager\execute.py:54, in quick_execute(op_name, num_outputs, inputs, attrs, ctx, name)
52 try:
53 ctx.ensure_initialized()
---> 54 tensors = pywrap_tfe.TFE_Py_Execute(ctx._handle, device_name, op_name,
55 inputs, attrs, num_outputs)
56 except core._NotOkStatusException as e:
57 if name is not None:
ResourceExhaustedError: Graph execution error:
Detected at node 'gradient_tape/model/block_1_pad/Slice_1' defined at (most recent call last):
File "C:\Users\leand\.conda\envs\directml\lib\runpy.py", line 196, in _run_module_as_main
return _run_code(code, main_globals, None,
File "C:\Users\leand\.conda\envs\directml\lib\runpy.py", line 86, in _run_code
exec(code, run_globals)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel_launcher.py", line 17, in <module>
app.launch_new_instance()
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\traitlets\config\application.py", line 992, in launch_instance
app.start()
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel\kernelapp.py", line 711, in start
self.io_loop.start()
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\tornado\platform\asyncio.py", line 215, in start
self.asyncio_loop.run_forever()
File "C:\Users\leand\.conda\envs\directml\lib\asyncio\base_events.py", line 603, in run_forever
self._run_once()
File "C:\Users\leand\.conda\envs\directml\lib\asyncio\base_events.py", line 1909, in _run_once
handle._run()
File "C:\Users\leand\.conda\envs\directml\lib\asyncio\events.py", line 80, in _run
self._context.run(self._callback, *self._args)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel\kernelbase.py", line 510, in dispatch_queue
await self.process_one()
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel\kernelbase.py", line 499, in process_one
await dispatch(*args)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel\kernelbase.py", line 406, in dispatch_shell
await result
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel\kernelbase.py", line 729, in execute_request
reply_content = await reply_content
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel\ipkernel.py", line 411, in do_execute
res = shell.run_cell(
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\ipykernel\zmqshell.py", line 531, in run_cell
return super().run_cell(*args, **kwargs)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\IPython\core\interactiveshell.py", line 2945, in run_cell
result = self._run_cell(
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\IPython\core\interactiveshell.py", line 3000, in _run_cell
return runner(coro)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\IPython\core\async_helpers.py", line 129, in _pseudo_sync_runner
coro.send(None)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\IPython\core\interactiveshell.py", line 3203, in run_cell_async
has_raised = await self.run_ast_nodes(code_ast.body, cell_name,
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\IPython\core\interactiveshell.py", line 3382, in run_ast_nodes
if await self.run_code(code, result, async_=asy):
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\IPython\core\interactiveshell.py", line 3442, in run_code
exec(code_obj, self.user_global_ns, self.user_ns)
File "C:\Users\leand\AppData\Local\Temp\ipykernel_17272\2278945961.py", line 89, in <module>
History = fold_model.fit(
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\keras\utils\traceback_utils.py", line 65, in error_handler
return fn(*args, **kwargs)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\keras\engine\training.py", line 1564, in fit
tmp_logs = self.train_function(iterator)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\keras\engine\training.py", line 1160, in train_function
return step_function(self, iterator)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\keras\engine\training.py", line 1146, in step_function
outputs = model.distribute_strategy.run(run_step, args=(data,))
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\keras\engine\training.py", line 1135, in run_step
outputs = model.train_step(data)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\keras\engine\training.py", line 997, in train_step
self.optimizer.minimize(loss, self.trainable_variables, tape=tape)
File "C:\Users\leand\.conda\envs\directml\lib\site-packages\keras\optimizers\optimizer_v1.py", line 872, in minimize
grads = tape.gradient(loss, var_list, grad_loss)
Node: 'gradient_tape/model/block_1_pad/Slice_1'
OOM when allocating tensor with shape[8,96,100,100] and type float on /job:localhost/replica:0/task:0/device:GPU:0 by allocator PluggableDevice_0_bfc
[[{{node gradient_tape/model/block_1_pad/Slice_1}}]]
Hint: If you want to see a list of allocated tensors when OOM happens, add report_tensor_allocations_upon_oom to RunOptions for current allocation info. This isn't available when running in Eager mode.
[Op:__inference_train_function_20953]
MY MODEL:
# MODELO DE BASE
# https://keras.io/api/applications/
def model(modelo):
# modelo base
base_model = modelo(
include_top = False,
weights = "imagenet", # modelo pré-treinado para não utilizar pesos aleatórios
input_shape = (200, 200, 3) # 200W X 200H X 3 CANAIS
)
# NOVO MODELO A PARTIR DO MODELO DE BASE
n_category = 9 # number of categories
new_model = base_model.output
new_model = GlobalAveragePooling2D()(new_model)
new_model = Dropout(0.25)(new_model)
# camada de predição (saída)
prediction_layer = Dense(n_category, activation='softmax')(new_model) # 9 tipos de tomate
# acoplando as camadas de entrada e saída
new_model = Model(
inputs = base_model.input, # a entrada é com base no dataset
outputs = prediction_layer # a saída é com base no número de categorias
)
return new_model
Metadata
Metadata
Assignees
Labels
No labels