Skip to main content

Advertisement

Log in

The organic matrix of coleoid cephalopod shells: molecular weights and isoelectric properties of the soluble matrix in relation to biomineralization processes

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Soluble matrices of coleoid cephalopod shells, namely the organic pen of Loligo sp. and mincralized calcified shells of Spirula spirula and Sepia sp., were extracted and studied by HPLC (high-performance liquid chromatography) gel filtration and isoelectrofocusing (IEF). Molecular weights of Spirula spirula and Sepia sp. extracts are not well separated, whereas Loligo sp. shows several well-defined peaks. In Loligo sp. and Sepia sp., molecular weights of > 100 kdaltons were found. Spirula spirula yielded a profile devoid of high molecular material. The main part of the extracted matrix of the organic pen of Loligo sp. is basic. In mineralized shells of both Spirula spirula and Sepia sp., the soluble organic matrices are acidic. These results support the view that the acidity of the organic matrix is related to mineralization processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Bandel K, Boletzky S von (1979) A comparative study of the structure, development and morphological relationships of chambered cephalopod shells. Veliger 21: 313–354

    Google Scholar 

  • Barskov IS (1973) Microstructure of the skeletal layers of Sepia and Spirula compared with the shell layers of other molluscs. Paleont J Wash 3: 285–294

    Google Scholar 

  • Boggild OB (1930) The shell structure of the mollusks. Kgl Danske Vidensk Selsk Skr (Naturvidensk og math) 9/2: 231–236

    Google Scholar 

  • Crenshaw MA (1972) The soluble matrix from Mercenaria mercenaria shell. ForschBer Biomineralis Akad Wiss Lit, Mainz (Biomineralization Res Rep) 6: 6–11

    Google Scholar 

  • Crenshaw MA, Ristedt H (1976) The histochemical localization of reactive groups in septal nacre from Nautilus pompilius L. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, pp 355–367

    Google Scholar 

  • Dauphin Y (1976) Microstructure de coquilles de céphalopodes. I. Spirula spirula L. (Dibranchiata, Decapoda). Bull Mus natn Hist nat, Paris, 3è sér. (sect Sciences Terre) 54 (382): 197–238

    Google Scholar 

  • Dauphin Y (1981) Microstructure des coquilles de céphalopodes. II. La seiche (Mollusca, Coleoida). Palaeontographica (Abt A) 176: 35–51

    Google Scholar 

  • Dauphin Y, Keller JP (1982) Mise en évidence d'un type structural coquillier spécifique des céphalopodes dibranchiaux. C r hebd Séanc Acad Sci, Paris II 294: 409–412

    Google Scholar 

  • Dauphin Y, Kervadec GW (1994) Comparaison des diagenèses subies par les phases minérale et protéique soluble des tests de mollusques céphalopodes coléoïdes. Palaeontographica (Abt A) 232: 85–98

    Google Scholar 

  • Dauphin Y, Marin F (1995) The compositional analysis of recent cephalopod shell carbohydrates by Fourier transform infrared spectrometry and high performance anion exchange-pulsed amperometric detection. Experientia 51: 278–283

    Google Scholar 

  • Degens ET, Spencer DW, Parker RH (1967) Paleobiochemistry of molluscan shell proteins. Comp Biochem Physiol 20: 533–579

    Google Scholar 

  • Drozdova TV, Karyakin AV, Krasnova VA (1971) Chemical composition and infrared absorption spectra of the organic matrix of the shell in the squid Sepia pharaonis. Zh evolyut Biokhim Fiziol 7: 350–356 [In Russ]

    Google Scholar 

  • Ghiselin MT, Degens ET, Spencer DW, Parker PH (1967) A phylogenetic survey of molluscan matrix proteins. Breviora 262: 1–35

    Google Scholar 

  • Grégoire C (1972) Structure of the molluscan shell. In: florkin M, Scheer BT (eds) Chemical zoology. Vol. 7 Academic Press, New York, pp 45–102

    Google Scholar 

  • Grégoire C, Ducháteau GH, Florkin M (1955) La trame protidique des nacres et des perles. Annls Inst océanogr, Monaco 31: 1–8

    Google Scholar 

  • Hare PE (1963) Amino acids in the proteins from aragonite and calcite in the shells of Mytilus californianus. Science, Wash 139: 216–217

    Google Scholar 

  • Hopkins B, Boletzky S von (1994) The fine morphology of the shell sac in the squid genus Loligo (Mollusca: Cephalopoda): features of a modified conchiferan program. Veliger 37: 344–357

    Google Scholar 

  • Hunt S, Nixon M (1981) A comparative study of protein composition in the chitin-protein complexes of the beak, pen, sucker-disc, radula and oesophageal cuticle of cephalopods. Comp Biochem Physiol 68B: 535–546

    Google Scholar 

  • Krampitz G, Drolshagen H, Häusle J, Hof-Irmscher K (1983) Organic matrices of mollusc shells. In: Westbroek P, de Jong EW (eds) Biomineralization and biological metal accumulation. D. Reidel, pp 231–247

  • Krampitz G, Engels J, Cazaux C (1976) Biochemical studies on water-soluble proteins and related components of gastropod shells. In: Watabe N, Wilbur KM (eds) The mechanisms of mineralization in the invertebrates and plants. University of South Carolina Press, Columbia, pp 55–173

    Google Scholar 

  • Peters W (1972) Occurrence of chitin in Mollusca. Comp Biochem Physiol 41B: 541–550

    Google Scholar 

  • Samata T, Sanguansri P, Cazaux C, Hamm M, Engels, J, Krampitz G (1980) Biochemical studies on components of mollusc shells. In: Omori M, Watabe N (eds) The mechanisms of biomineralization in animals and plants. Tokai University Press, Tokyo, pp 37–47

    Google Scholar 

  • Sillero A, Ribeiro JM (1989) Isoelectric points of protein: theoretical determination. Analyt Biochem 179: 319–325

    Google Scholar 

  • Simkiss K (1965) The organic matrix of the oyster shell. Comp Biochem Physiol 16: 427–435

    Google Scholar 

  • Wada K (1966) Studies on the mineralization of the calcified tissue in molluscs. XII. Specific patterns of non-mineralized layer conchiolin in amino acid composition. Bull Jap Soc scient Fish 32: 304–311

    Google Scholar 

  • Watabe N, Kingsley RJ, Kawaguchi T (1993) Functions of organic matrices in some invertebrate calcifying systems. In: Kobayashi I, Mutvei H, Sahni A (eds) Structure, formation and evolution of fossil hard tissues. Tokai University Press, Tokyo, pp 3–11

    Google Scholar 

  • Weiner S (1979) Aspartic acid-rich proteins: major components of the soluble organic matrix of mollusk shells. Calcif Tissue int 29: 163–167

    Google Scholar 

  • Weiner S, Hood L (1975). Soluble protein of the organic matrix of mollusk shells: a potential template for shell formation. Science, Wash 190: 987–989

    Google Scholar 

  • Weiner S, Traub W (1984) Macromolecules in mollusc shells and their functions in biomineralization. Phil Trans R Soc (Ser B) 304: 425–434

    Google Scholar 

  • Wilbur KM (1964) Shell formation and regeneration. In: Wilbur KM, Younge CM (eds) Physiology of Mollusca. I. Academic Press, New York, pp 243–282

    Google Scholar 

  • Wilbur KM, Simkiss K (1968) Calcified shells. In: Florkin M, Stotz EH (eds) Comprehensive biochemistry. Vol 26A. Elsevier, New York, pp 229–295

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by A. Rodriguez, Puerto Real

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dauphin, Y. The organic matrix of coleoid cephalopod shells: molecular weights and isoelectric properties of the soluble matrix in relation to biomineralization processes. Marine Biology 125, 525–529 (1996). https://doi.org/10.1007/BF00353265

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00353265

Keywords