Extracting work from a single thermal bath via quantum negentropy
- PMID: 11736390
- DOI: 10.1103/PhysRevLett.87.220601
Extracting work from a single thermal bath via quantum negentropy
Abstract
Classical heat engines produce work by operating between a high temperature energy source and a low temperature entropy sink. The present quantum heat engine has no cooler reservoir acting as a sink of entropy but has instead an internal reservoir of negentropy which allows extraction of work from one thermal bath. The process is attended by constantly increasing entropy and does not violate the second law of thermodynamics.
Similar articles
-
Extracting work from a single heat bath via vanishing quantum coherence.Science. 2003 Feb 7;299(5608):862-4. doi: 10.1126/science.1078955. Epub 2003 Jan 2. Science. 2003. PMID: 12511655
-
Algorithmic quantum heat engines.Phys Rev E. 2019 Jul;100(1-1):012109. doi: 10.1103/PhysRevE.100.012109. Phys Rev E. 2019. PMID: 31499932
-
Quantum engine efficiency bound beyond the second law of thermodynamics.Nat Commun. 2018 Jan 11;9(1):165. doi: 10.1038/s41467-017-01991-6. Nat Commun. 2018. PMID: 29323109 Free PMC article.
-
Quantum heat engines and refrigerators: continuous devices.Annu Rev Phys Chem. 2014;65:365-93. doi: 10.1146/annurev-physchem-040513-103724. Annu Rev Phys Chem. 2014. PMID: 24689798 Review.
-
Stochastic thermodynamics, fluctuation theorems and molecular machines.Rep Prog Phys. 2012 Dec;75(12):126001. doi: 10.1088/0034-4885/75/12/126001. Epub 2012 Nov 20. Rep Prog Phys. 2012. PMID: 23168354 Review.
Cited by
-
Quantum Relative Entropy of Tagging and Thermodynamics.Entropy (Basel). 2020 Jan 24;22(2):138. doi: 10.3390/e22020138. Entropy (Basel). 2020. PMID: 33285913 Free PMC article.
-
Quantum Information Remote Carnot Engines and Voltage Transformers.Entropy (Basel). 2019 Jan 30;21(2):127. doi: 10.3390/e21020127. Entropy (Basel). 2019. PMID: 33266843 Free PMC article.
LinkOut - more resources
Full Text Sources