Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2007 Aug;17(8):820-7.
doi: 10.1093/glycob/cwm056. Epub 2007 May 23.

O-linked glycan expression during Drosophila development

Affiliations

O-linked glycan expression during Drosophila development

E Tian et al. Glycobiology. 2007 Aug.

Abstract

Mucin-type O-linked glycosylation is an evolutionarily conserved protein modification that is essential for viability in Drosophila melanogaster. However, the exact role of O-glycans and the identity of the crucial apoproteins modified with O-linked N-acetylgalactosamine (O-GalNAc) remain unknown. In an effort to elucidate the O-linked glycans expressed during Drosophila development, we have employed fluorescent confocal microscopy using a battery of lectins and an antibody specific for the GalNAcalpha-Ser/Thr structure (Tn antigen). Confocal microscopy provides high-resolution images of the diversity of glycans expressed in many developing organ systems. In particular, O-glycans are highly expressed on a number of ectodermally derived tissues such as the salivary glands, developing gut, and the tracheal system, suggesting a role for O-glycans in cell polarity and tube formation common to these organs. Additionally, O-glycans are found in the developing nervous system and within subregions of developing tissues known to be active in cell signaling events. This study provides us with temporal and spatial information regarding O-glycan expression as well as a set of reagents for the isolation of glycoproteins from specific developmental stages and organ systems. This information will aid us in identifying the in vivo substrates of the UDP-GalNAc: polypeptide N-acetylgalactosaminyltranferases, in a continuing effort to define the biological role of O-linked glycoproteins during development.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources