Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 2008 Jan;78(1):7-21.
doi: 10.1016/j.eplepsyres.2007.10.002. Epub 2007 Nov 26.

Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex

Affiliations

Inflammatory processes in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex

K Boer et al. Epilepsy Res. 2008 Jan.

Abstract

Cortical tubers and subependymal giant cell tumors (SGCT) are two major cerebral lesions associated with tuberous sclerosis complex (TSC). In the present study, we investigated immunocytochemically the inflammatory cell components and the induction of two major pro-inflammatory pathways (the interleukin (IL)-1beta and complement pathways) in tubers and SGCT resected from TSC patients. All lesions were characterized by the prominent presence of microglial cells expressing class II-antigens (HLA-DR) and, to a lesser extent, the presence of CD68-positive macrophages. We also observed perivascular and parenchymal T lymphocytes (CD3(+)) with a predominance of CD8(+) T-cytotoxic/suppressor lymphoid cells. Activated microglia and reactive astrocytes expressed IL-1beta and its signaling receptor IL-1RI, as well as components of the complement cascade, such as C1q, C3c and C3d. Albumin extravasation, with uptake in astrocytes, was observed in both tubers and SGCT, suggesting that alterations in blood brain barrier permeability are associated with inflammation in TSC-associated lesions. Our findings demonstrate a persistent and complex activation of inflammatory pathways in cortical tubers and SGCT.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms

LinkOut - more resources