'... a metal conducts and a non-metal doesn't'
- PMID: 20123742
- PMCID: PMC3263814
- DOI: 10.1098/rsta.2009.0282
'... a metal conducts and a non-metal doesn't'
Abstract
In a letter to one of the authors, Sir Nevill Mott, then in his tenth decade, highlighted the fact that the statement '... a metal conducts, and a non-metal doesn't' can be true only at the absolute zero of temperature, T=0 K. But, of course, experimental studies of metals, non-metals and, indeed, the electronic and thermodynamic transition between these canonical states of matter must always occur above T=0 K, and, in many important cases, for temperatures far above the absolute zero. Here, we review the issues-theoretical and experimental-attendant on studies of the metal to non-metal transition in doped semiconductors at temperatures close to absolute zero (T=0.03 K) and fluid chemical elements at temperatures far above absolute zero (T>1000 K). We attempt to illustrate Mott's insights for delving into such complex phenomena and experimental systems, finding intuitively the dominant features of the science, and developing a coherent picture of the different competing electronic processes. A particular emphasis is placed on the idea of a 'Mott metal to non-metal transition' in the nominally metallic chemical elements rubidium, caesium and mercury, and the converse metallization transition in the nominally non-metal elements hydrogen and oxygen. We also review major innovations by D. A. Goldhammer (Goldhammer 1913 Dispersion und absorption des lichtes) and K. F. Herzfeld (Herzfeld 1927 Phys. Rev. 29, 701-705. (doi:10.1103/PhysRev.29.701)) in a pre-quantum theory description of the metal-non-metal transition, which emphasize the pivotal role of atomic properties in dictating the metallic or non-metallic status of the chemical elements of the periodic table under ambient and extreme conditions; a link with Pauling's 'metallic orbital' is also established here.
Figures














Similar articles
-
Metals and non-metals in the periodic table.Philos Trans A Math Phys Eng Sci. 2020 Sep 18;378(2180):20200213. doi: 10.1098/rsta.2020.0213. Epub 2020 Aug 17. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32811363 Free PMC article.
-
On the occurrence of metallic character in the periodic table of the chemical elements.Philos Trans A Math Phys Eng Sci. 2015 Mar 13;373(2037):20140477. doi: 10.1098/rsta.2014.0477. Philos Trans A Math Phys Eng Sci. 2015. PMID: 25666074
-
Planning Implications Related to Sterilization-Sensitive Science Investigations Associated with Mars Sample Return (MSR).Astrobiology. 2022 Jun;22(S1):S112-S164. doi: 10.1089/AST.2021.0113. Epub 2022 May 19. Astrobiology. 2022. PMID: 34904892
-
Muonium as a model for interstitial hydrogen in the semiconducting and semimetallic elements.Rep Prog Phys. 2009 Oct 15;72(11). doi: 10.1088/0034-4885/72/11/116501. Rep Prog Phys. 2009. PMID: 35172524 Review.
-
Towards chemistry at absolute zero.Nat Rev Chem. 2021 Feb;5(2):125-140. doi: 10.1038/s41570-020-00239-0. Epub 2021 Jan 12. Nat Rev Chem. 2021. PMID: 37117610 Review.
Cited by
-
Metals and non-metals in the periodic table.Philos Trans A Math Phys Eng Sci. 2020 Sep 18;378(2180):20200213. doi: 10.1098/rsta.2020.0213. Epub 2020 Aug 17. Philos Trans A Math Phys Eng Sci. 2020. PMID: 32811363 Free PMC article.
-
Quantum molecular dynamics study of expanded beryllium: evolution from warm dense matter to atomic fluid.Sci Rep. 2014 Jul 31;4:5898. doi: 10.1038/srep05898. Sci Rep. 2014. PMID: 25081816 Free PMC article.
-
Ultrafast multi-cycle terahertz measurements of the electrical conductivity in strongly excited solids.Nat Commun. 2021 Mar 12;12(1):1638. doi: 10.1038/s41467-021-21756-6. Nat Commun. 2021. PMID: 33712576 Free PMC article.
-
Low to near-zero CO2 production of hydrogen from fossil fuels: critical role of microwave-initiated catalysis.Philos Trans A Math Phys Eng Sci. 2025 May 22;383(2297):20240061. doi: 10.1098/rsta.2024.0061. Epub 2025 May 22. Philos Trans A Math Phys Eng Sci. 2025. PMID: 40400325 Free PMC article.
References
-
- Anderson P. W. On the absence of diffusion in certain random lattices. Phys. Rev. 1958;109:1492–1505. doi: 10.1103/PhysRev.109.1492. ( ) - DOI
-
- Anderson P. W. Local moments and localized states. Rev. Mod. Phys. 1978;50:191–201. - PubMed
-
- Ashcroft N. W. The metal-insulator transition: complexity in a simple system. J. Non. Cryst. Solids. 1993;156:621–630. doi: 10.1016/0022-3093(93)90035-V. ( ) - DOI
-
- Bardeen J. Electrical conductivity of metals. J. Appl. Phys. 1940;11:88. doi: 10.1063/1.1712751. ( ) - DOI
LinkOut - more resources
Full Text Sources