Atmospheric oxygen level and the evolution of insect body size
- PMID: 20219733
- PMCID: PMC2880098
- DOI: 10.1098/rspb.2010.0001
Atmospheric oxygen level and the evolution of insect body size
Abstract
Insects are small relative to vertebrates, possibly owing to limitations or costs associated with their blind-ended tracheal respiratory system. The giant insects of the late Palaeozoic occurred when atmospheric PO(2) (aPO(2)) was hyperoxic, supporting a role for oxygen in the evolution of insect body size. The paucity of the insect fossil record and the complex interactions between atmospheric oxygen level, organisms and their communities makes it impossible to definitively accept or reject the historical oxygen-size link, and multiple alternative hypotheses exist. However, a variety of recent empirical findings support a link between oxygen and insect size, including: (i) most insects develop smaller body sizes in hypoxia, and some develop and evolve larger sizes in hyperoxia; (ii) insects developmentally and evolutionarily reduce their proportional investment in the tracheal system when living in higher aPO(2), suggesting that there are significant costs associated with tracheal system structure and function; and (iii) larger insects invest more of their body in the tracheal system, potentially leading to greater effects of aPO(2) on larger insects. Together, these provide a wealth of plausible mechanisms by which tracheal oxygen delivery may be centrally involved in setting the relatively small size of insects and for hyperoxia-enabled Palaeozoic gigantism.
Figures


Similar articles
-
Effects of insect body size on tracheal structure and function.Adv Exp Med Biol. 2007;618:221-8. doi: 10.1007/978-0-387-75434-5_17. Adv Exp Med Biol. 2007. PMID: 18269200 Review.
-
Environmental and biotic controls on the evolutionary history of insect body size.Proc Natl Acad Sci U S A. 2012 Jul 3;109(27):10927-30. doi: 10.1073/pnas.1204026109. Epub 2012 Jun 4. Proc Natl Acad Sci U S A. 2012. PMID: 22665762 Free PMC article.
-
Atmospheric hypoxia limits selection for large body size in insects.PLoS One. 2009;4(1):e3876. doi: 10.1371/journal.pone.0003876. Epub 2009 Jan 7. PLoS One. 2009. PMID: 19127286 Free PMC article.
-
Multigenerational Effects of Rearing Atmospheric Oxygen Level on the Tracheal Dimensions and Diffusing Capacities of Pupal and Adult Drosophila melanogaster.Adv Exp Med Biol. 2016;903:285-300. doi: 10.1007/978-1-4899-7678-9_20. Adv Exp Med Biol. 2016. PMID: 27343104
-
Atmospheric oxygen, giant Paleozoic insects and the evolution of aerial locomotor performance.J Exp Biol. 1998 Apr;201(Pt 8):1043-50. doi: 10.1242/jeb.201.8.1043. J Exp Biol. 1998. PMID: 9510518 Review.
Cited by
-
Resting metabolism and critical thermal maxima of vespine wasps (Vespula sp.).J Insect Physiol. 2012 May;58(5):679-89. doi: 10.1016/j.jinsphys.2012.01.015. Epub 2012 Feb 10. J Insect Physiol. 2012. PMID: 22326295 Free PMC article.
-
Systemic orchestration of cell size throughout the body: influence of sex and rapamycin exposure in Drosophila melanogaster.Biol Lett. 2023 Mar;19(3):20220611. doi: 10.1098/rsbl.2022.0611. Epub 2023 Mar 22. Biol Lett. 2023. PMID: 36946132 Free PMC article.
-
A new mathematical approach for qualitative modeling of the insulin-TOR-MAPK network.Front Physiol. 2013 Sep 12;4:245. doi: 10.3389/fphys.2013.00245. eCollection 2013. Front Physiol. 2013. PMID: 24062690 Free PMC article.
-
An Evaluation of Morphometric Characteristics of Honey Bee (Apis cerana) Populations in the Qinghai-Tibet Plateau in China.Life (Basel). 2025 Feb 7;15(2):255. doi: 10.3390/life15020255. Life (Basel). 2025. PMID: 40003664 Free PMC article.
-
Evolution and physiology of neural oxygen sensing.Front Physiol. 2014 Aug 12;5:302. doi: 10.3389/fphys.2014.00302. eCollection 2014. Front Physiol. 2014. PMID: 25161625 Free PMC article. Review.
References
-
- Allen C. R., Garmestani A. F., Havlicek T. D., Marquet P. A., Peterson P. D., Restrepo C., Stow C. A., Weeks B. E.2006Patterns in body size distributions: sifting among alternative hypotheses. Ecol. Lett. 9, 630–648 (doi:10.1111/j.1461-0248.2006.00902.x) - DOI - PubMed
-
- Bailey S. M., Xu J., Feng J. H., Hu X., Zhang C., Qui S.2007Tradeoffs between oxygen and energy in tibial growth at high altitude. Am. J. Hum. Biol. 19, 662–668 (doi:10.1002/ajhb.20667) - DOI - PubMed
-
- Beckemeyer R. J., Hall J. D.2007The entomofauna of the lower Permian fossil insect beds of Kansas and Oklahoma, USA. Afr. Invertebrates 48, 23–39
-
- Bergman N. M., Lenton T. M., Watson A. J.2004COPSE: a new model of biogeochemical cycling over Phanaerozoic time. Am. J. Sci. 304, 397–437 (doi:10.2475/ajs.304.5.397) - DOI
-
- Berner R. A.2005The carbon and sulfur cycles and atmospheric oxygen from middle Permian to middle Triassic. Geochim. Cosmochim. Acta 69, 3211–3217 (doi:10.1016/j.gca.2005.03.021) - DOI
Publication types
MeSH terms
Substances
LinkOut - more resources
Full Text Sources