Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 2011 Apr 7;15(2):304.
doi: 10.1186/cc10052.

Beyond volutrauma in ARDS: the critical role of lung tissue deformation

Affiliations
Review

Beyond volutrauma in ARDS: the critical role of lung tissue deformation

Guillermo M Albaiceta et al. Crit Care. .

Abstract

Ventilator-induced lung injury (VILI) consists of tissue damage and a biological response resulting from the application of inappropriate mechanical forces to the lung parenchyma. The current paradigm attributes VILI to overstretching due to very high-volume ventilation (volutrauma) and cyclic changes in aeration due to very low-volume ventilation (atelectrauma); however, this model cannot explain some research findings. In the present review, we discuss the relevance of cyclic deformation of lung tissue as the main determinant of VILI. Parenchymal stability resulting from the interplay of respiratory parameters such as tidal volume, positive end-expiratory pressure or respiratory rate can explain the results of different clinical trials and experimental studies that do not fit with the classic volutrauma/atelectrauma model. Focusing on tissue deformation could lead to new bedside monitoring and ventilatory strategies.

PubMed Disclaimer

Figures

Figure 1
Figure 1
Influence of ventilatory settings in alveolar stability. Differences between end-expiratory and end-inspiratory alveolar size increase with tidal volume and decrease with positive end-expiratory pressure (PEEP) (measured in an experimental model of lung injury). Note the synergistic relationship between these two parameters, and that PEEP may decrease the change in size in spite of high tidal volumes. Data extracted from [38].
Figure 2
Figure 2
Effects of recruitment in alveolar stability. Alveolar stability can be achieved by the equilibrium between end-inspiratory and end-expiratory volumes. This stability allows definition of a hypothetical safe zone (blue area). Because strain can be viewed as the ratio between these volumes, this zone corresponds to normal or lower strain values. On the contrary, excessive end-inspiratory deformation in lungs with a low resting volume leads to alveolar instability (red area). The arrows represent how the tidal volume (Vt) and positive end-expiratory pressure (PEEP) modify the end-inspiratory/end-expiratory ratio. In recruitable lungs, PEEP induces an increase in end-expiratory lung volume that allows ventilation to stay in the safe zone, and strain decreases. In the absence of recruitment, however, both the Vt and PEEP lead to a predominant increase in end-inspiratory volume, therefore increasing strain. FRC, functional residual capacity.

Similar articles

Cited by

References

    1. dos Santos CC, Slutsky AS. The contribution of biophysical lung injury to the development of biotrauma. Annu Rev Physiol. 2006;68:585–618. doi: 10.1146/annurev.physiol.68.072304.113443. - DOI - PubMed
    1. International consensus conferences in intensive care medicine. Ventilator-associated lung injury in ARDS. American Thoracic Society, European Society of Intensive Care Medicine, Societe de Reanimation Langue Francaise. Intensive Care Med. 1999;25:1444–1452. doi: 10.1007/s001340051097. - DOI - PubMed
    1. Brower RG, Shanholtz CB, Fessler HE, Shade DM, White P, Wiener CM, Teeter JG, Dodd-o JM, Almog Y, Piantadosi S. Prospective, randomized, controlled clinical trial comparing traditional versus reduced tidal volume ventilation in acute respiratory distress syndrome patients. Crit Care Med. 1999;27:1492–1498. doi: 10.1097/00003246-199908000-00015. - DOI - PubMed
    1. Amato MB, Barbas CS, Medeiros DM, Magaldi RB, Schettino GP, Lorenzi-Filho G, Kairalla RA, Deheinzelin D, Munoz C, Oliveira R, Takagaki TY, Carvalho CR. Effect of a protective-ventilation strategy on mortality in the acute respiratory distress syndrome. N Engl J Med. 1998;338:347–354. doi: 10.1056/NEJM199802053380602. - DOI - PubMed
    1. Brochard L, Roudot-Thoraval F, Roupie E, Delclaux C, Chastre J, Fernandez-Mondejar E, Clementi E, Mancebo J, Factor P, Matamis D, Ranieri M, Blanch L, Rodi G, Mentec H, Dreyfuss D, Ferrer M, Brun-Buisson C, Tobin M, Lemaire F. Tidal volume reduction for prevention of ventilator-induced lung injury in acute respiratory distress syndrome. The Multicenter Trail Group on Tidal Volume reduction in ARDS. Am J Respir Crit Care Med. 1998;158:1831–1838. - PubMed

MeSH terms

LinkOut - more resources