Electroreception in the Guiana dolphin (Sotalia guianensis)
- PMID: 21795271
- PMCID: PMC3248726
- DOI: 10.1098/rspb.2011.1127
Electroreception in the Guiana dolphin (Sotalia guianensis)
Abstract
Passive electroreception is a widespread sense in fishes and amphibians, but in mammals this sensory ability has previously only been shown in monotremes. While the electroreceptors in fish and amphibians evolved from mechanosensory lateral line organs, those of monotremes are based on cutaneous glands innervated by trigeminal nerves. Electroreceptors evolved from other structures or in other taxa were unknown to date. Here we show that the hairless vibrissal crypts on the rostrum of the Guiana dolphin (Sotalia guianensis), structures originally associated with the mammalian whiskers, serve as electroreceptors. Histological investigations revealed that the vibrissal crypts possess a well-innervated ampullary structure reminiscent of ampullary electroreceptors in other species. Psychophysical experiments with a male Guiana dolphin determined a sensory detection threshold for weak electric fields of 4.6 µV cm(-1), which is comparable to the sensitivity of electroreceptors in platypuses. Our results show that electroreceptors can evolve from a mechanosensory organ that nearly all mammals possess and suggest the discovery of this kind of electroreception in more species, especially those with an aquatic or semi-aquatic lifestyle.
Figures




Similar articles
-
Passive electroreception in aquatic mammals.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jun;199(6):555-63. doi: 10.1007/s00359-012-0780-8. Epub 2012 Nov 28. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013. PMID: 23187861 Review.
-
Passive electroreception in bottlenose dolphins (Tursiops truncatus): implication for micro- and large-scale orientation.J Exp Biol. 2023 Nov 15;226(22):jeb245845. doi: 10.1242/jeb.245845. Epub 2023 Nov 30. J Exp Biol. 2023. PMID: 38035544 Free PMC article.
-
Behavioral and anatomical evidence for electroreception in the bottlenose dolphin (Tursiops truncatus).Anat Rec (Hoboken). 2022 Mar;305(3):592-608. doi: 10.1002/ar.24773. Epub 2021 Sep 24. Anat Rec (Hoboken). 2022. PMID: 34558802
-
The follicle-sinus complex of the bottlenose dolphin (Tursiops truncatus). Functional anatomy and possible evolutional significance of its somato-sensory innervation.J Anat. 2021 Apr;238(4):942-955. doi: 10.1111/joa.13345. Epub 2020 Oct 24. J Anat. 2021. PMID: 33099774 Free PMC article.
-
Guiana dolphins (Sotalia guianensis) as marine ecosystem sentinels: ecotoxicology and emerging diseases.Rev Environ Contam Toxicol. 2014;228:1-29. doi: 10.1007/978-3-319-01619-1_1. Rev Environ Contam Toxicol. 2014. PMID: 24162090 Review.
Cited by
-
The evolution and development of vertebrate lateral line electroreceptors.J Exp Biol. 2013 Jul 1;216(Pt 13):2515-22. doi: 10.1242/jeb.082362. J Exp Biol. 2013. PMID: 23761476 Free PMC article. Review.
-
Passive electroreception in aquatic mammals.J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jun;199(6):555-63. doi: 10.1007/s00359-012-0780-8. Epub 2012 Nov 28. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013. PMID: 23187861 Review.
-
Elaboration and Innervation of the Vibrissal System in the Rock Hyrax (Procavia capensis).Brain Behav Evol. 2015;85(3):170-88. doi: 10.1159/000381415. Epub 2015 May 27. Brain Behav Evol. 2015. PMID: 26022696 Free PMC article.
-
Exploiting common senses: sensory ecology meets wildlife conservation and management.Conserv Physiol. 2021 Mar 29;9(1):coab002. doi: 10.1093/conphys/coab002. eCollection 2021. Conserv Physiol. 2021. PMID: 33815799 Free PMC article.
-
The neurobiology and behavior of the American water shrew (Sorex palustris).J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013 Jun;199(6):545-54. doi: 10.1007/s00359-012-0781-7. Epub 2013 Feb 9. J Comp Physiol A Neuroethol Sens Neural Behav Physiol. 2013. PMID: 23397460 Review.
References
-
- Thewissen J. G. M., Nummela S. 2008. Sensory evolution on the threshold: adaptations in secondarily aquatic vertebrates. Berkeley, CA: University of California Press
-
- Collin S. P., Marshall N. J. 2003. Sensory processing in aquatic environments. New York, NY: Springer
-
- Lissmann H. W. 1951. Continuous electrical signals from the tail of a fish, Gymnarchus niloticus. Nature 167, 201–20210.1038/167201a0 (doi:10.1038/167201a0) - DOI - DOI - PubMed
-
- von der Emde G. 2006. Non-visual environmental imaging and object detection through active electrolocation in weakly electric fish. J. Comp. Physiol. A 192, 601–61210.1007/s00359-006-0096-7 (doi:10.1007/s00359-006-0096-7) - DOI - DOI - PubMed
-
- Collin S. P., Whitehead D. 2004. The functional roles of passive electroreception in non-electric fishes. Anim. Biol. 54, 1–2510.1163/157075604323010024 (doi:10.1163/157075604323010024) - DOI - DOI
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources