Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
- PMID: 22304154
- DOI: 10.1103/PhysRevE.84.066106
Asymptotic analysis of the stochastic block model for modular networks and its algorithmic applications
Abstract
In this paper we extend our previous work on the stochastic block model, a commonly used generative model for social and biological networks, and the problem of inferring functional groups or communities from the topology of the network. We use the cavity method of statistical physics to obtain an asymptotically exact analysis of the phase diagram. We describe in detail properties of the detectability-undetectability phase transition and the easy-hard phase transition for the community detection problem. Our analysis translates naturally into a belief propagation algorithm for inferring the group memberships of the nodes in an optimal way, i.e., that maximizes the overlap with the underlying group memberships, and learning the underlying parameters of the block model. Finally, we apply the algorithm to two examples of real-world networks and discuss its performance.
Similar articles
-
Phase transitions in semisupervised clustering of sparse networks.Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Nov;90(5-1):052802. doi: 10.1103/PhysRevE.90.052802. Epub 2014 Nov 5. Phys Rev E Stat Nonlin Soft Matter Phys. 2014. PMID: 25493829
-
Inference and phase transitions in the detection of modules in sparse networks.Phys Rev Lett. 2011 Aug 5;107(6):065701. doi: 10.1103/PhysRevLett.107.065701. Epub 2011 Aug 2. Phys Rev Lett. 2011. PMID: 21902340
-
Scalable detection of statistically significant communities and hierarchies, using message passing for modularity.Proc Natl Acad Sci U S A. 2014 Dec 23;111(51):18144-9. doi: 10.1073/pnas.1409770111. Epub 2014 Dec 8. Proc Natl Acad Sci U S A. 2014. PMID: 25489096 Free PMC article.
-
Algorithmic detectability threshold of the stochastic block model.Phys Rev E. 2018 Mar;97(3-1):032301. doi: 10.1103/PhysRevE.97.032301. Phys Rev E. 2018. PMID: 29776051
-
Parametric Bayesian filters for nonlinear stochastic dynamical systems: a survey.IEEE Trans Cybern. 2013 Dec;43(6):1607-24. doi: 10.1109/TSMCC.2012.2230254. IEEE Trans Cybern. 2013. PMID: 23757593 Review.
Cited by
-
Community Detection on Networks with Ricci Flow.Sci Rep. 2019 Jul 10;9(1):9984. doi: 10.1038/s41598-019-46380-9. Sci Rep. 2019. PMID: 31292482 Free PMC article.
-
No Statistical-Computational Gap in Spiked Matrix Models with Generative Network Priors.Entropy (Basel). 2021 Jan 16;23(1):115. doi: 10.3390/e23010115. Entropy (Basel). 2021. PMID: 33467175 Free PMC article.
-
Network community detection via neural embeddings.Nat Commun. 2024 Nov 1;15(1):9446. doi: 10.1038/s41467-024-52355-w. Nat Commun. 2024. PMID: 39487114 Free PMC article.
-
Statistical inference links data and theory in network science.Nat Commun. 2022 Nov 10;13(1):6794. doi: 10.1038/s41467-022-34267-9. Nat Commun. 2022. PMID: 36357376 Free PMC article. Review.
-
Resolution of ranking hierarchies in directed networks.PLoS One. 2018 Feb 2;13(2):e0191604. doi: 10.1371/journal.pone.0191604. eCollection 2018. PLoS One. 2018. PMID: 29394278 Free PMC article.