Quantum-enhanced absorption refrigerators
- PMID: 24492860
- PMCID: PMC3912482
- DOI: 10.1038/srep03949
Quantum-enhanced absorption refrigerators
Abstract
Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.
Figures


















Similar articles
-
Quantum heat engines and refrigerators: continuous devices.Annu Rev Phys Chem. 2014;65:365-93. doi: 10.1146/annurev-physchem-040513-103724. Annu Rev Phys Chem. 2014. PMID: 24689798 Review.
-
Coherences and the thermodynamic uncertainty relation: Insights from quantum absorption refrigerators.Phys Rev E. 2021 Mar;103(3-1):032138. doi: 10.1103/PhysRevE.103.032138. Phys Rev E. 2021. PMID: 33862758
-
Key issues review: useful autonomous quantum machines.Rep Prog Phys. 2024 Nov 15;87(12). doi: 10.1088/1361-6633/ad8803. Rep Prog Phys. 2024. PMID: 39419064 Review.
-
Unifying paradigms of quantum refrigeration: Fundamental limits of cooling and associated work costs.Phys Rev E. 2019 Oct;100(4-1):042130. doi: 10.1103/PhysRevE.100.042130. Phys Rev E. 2019. PMID: 31770926
-
Cold molecules: Progress in quantum engineering of chemistry and quantum matter.Science. 2017 Sep 8;357(6355):1002-1010. doi: 10.1126/science.aam6299. Epub 2017 Sep 7. Science. 2017. PMID: 28883071 Review.
Cited by
-
Experimentally reducing the quantum measurement back action in work distributions by a collective measurement.Sci Adv. 2019 Mar 1;5(3):eaav4944. doi: 10.1126/sciadv.aav4944. eCollection 2019 Mar. Sci Adv. 2019. PMID: 30838334 Free PMC article.
-
Quantum resources for purification and cooling: fundamental limits and opportunities.Sci Rep. 2014 Jun 5;4:5192. doi: 10.1038/srep05192. Sci Rep. 2014. PMID: 24898845 Free PMC article.
-
Quantum Thermal Amplifiers with Engineered Dissipation.Entropy (Basel). 2022 Jul 26;24(8):1031. doi: 10.3390/e24081031. Entropy (Basel). 2022. PMID: 35893011 Free PMC article.
-
Quantum coherence, many-body correlations, and non-thermal effects for autonomous thermal machines.Sci Rep. 2019 Feb 28;9(1):3191. doi: 10.1038/s41598-019-39300-4. Sci Rep. 2019. PMID: 30816164 Free PMC article.
-
Thermal electron-tunneling devices as coolers and amplifiers.Sci Rep. 2016 Feb 19;6:21425. doi: 10.1038/srep21425. Sci Rep. 2016. PMID: 26893109 Free PMC article.
References
-
- Palao J. P., Kosloff R. & Gordon J. M. Quantum thermodynamic cooling cycle. Phys. Rev. E 64, 056130 (2001). - PubMed
-
- Linden N., Popescu S. & Skrzypczyk P. How small can thermal machines be? the smallest possible refrigerator. Phys. Rev. Lett. 105, 130401 (2010). - PubMed
-
- Levy A. & Kosloff R. Quantum absorption refrigerator. Phys. Rev. Lett. 108, 070604 (2012). - PubMed
-
- Geva E. & Kosloff R. The quantum heat engine and heat pump: An irreversible thermodynamic analysis of the three-level amplifier. J. Chem. Phys. 104, 7681 (1996).
-
- Brunner N., Linden N., Popescu S. & Skrzypczyk P. Virtual qubits, virtual temperatures, and the foundations of thermodynamics. Phys. Rev. E 85, 051117 (2012). - PubMed
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources