Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour
- PMID: 27251279
- DOI: 10.1038/nature18289
Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour
Erratum in
-
Corrigendum: Convection in a volatile nitrogen-ice-rich layer drives Pluto's geological vigour.Nature. 2016 Sep 1;537(7618):122. doi: 10.1038/nature18937. Epub 2016 Jul 6. Nature. 2016. PMID: 27383784 No abstract available.
Abstract
The vast, deep, volatile-ice-filled basin informally named Sputnik Planum is central to Pluto's vigorous geological activity. Composed of molecular nitrogen, methane, and carbon monoxide ices, but dominated by nitrogen ice, this layer is organized into cells or polygons, typically about 10 to 40 kilometres across, that resemble the surface manifestation of solid-state convection. Here we report, on the basis of available rheological measurements, that solid layers of nitrogen ice with a thickness in excess of about one kilometre should undergo convection for estimated present-day heat-flow conditions on Pluto. More importantly, we show numerically that convective overturn in a several-kilometre-thick layer of solid nitrogen can explain the great lateral width of the cells. The temperature dependence of nitrogen-ice viscosity implies that the ice layer convects in the so-called sluggish lid regime, a unique convective mode not previously definitively observed in the Solar System. Average surface horizontal velocities of a few centimetres a year imply surface transport or renewal times of about 500,000 years, well under the ten-million-year upper-limit crater retention age for Sputnik Planum. Similar convective surface renewal may also occur on other dwarf planets in the Kuiper belt, which may help to explain the high albedos shown by some of these bodies.
Comment in
-
Icy heart could be key to Pluto's strange geology.Nature. 2016 Oct 27;538(7626):439. doi: 10.1038/nature.2016.20856. Nature. 2016. PMID: 27786223 No abstract available.
Similar articles
-
Vigorous convection as the explanation for Pluto's polygonal terrain.Nature. 2016 Jun 2;534(7605):79-81. doi: 10.1038/nature18016. Nature. 2016. PMID: 27251278
-
The Surface Age of Sputnik Planum, Pluto, Must Be Less than 10 Million Years.PLoS One. 2016 Jan 20;11(1):e0147386. doi: 10.1371/journal.pone.0147386. eCollection 2016. PLoS One. 2016. PMID: 26790001 Free PMC article.
-
The geology of Pluto and Charon through the eyes of New Horizons.Science. 2016 Mar 18;351(6279):1284-93. doi: 10.1126/science.aad7055. Science. 2016. PMID: 26989245
-
Organic Components of Small Bodies in the Outer Solar System: Some Results of the New Horizons Mission.Life (Basel). 2020 Jul 28;10(8):126. doi: 10.3390/life10080126. Life (Basel). 2020. PMID: 32731390 Free PMC article. Review.
-
Methane clathrates in the solar system.Astrobiology. 2015 Apr;15(4):308-26. doi: 10.1089/ast.2014.1189. Epub 2015 Mar 16. Astrobiology. 2015. PMID: 25774974 Review.
Cited by
-
Penitentes as the origin of the bladed terrain of Tartarus Dorsa on Pluto.Nature. 2017 Jan 12;541(7636):188-190. doi: 10.1038/nature20779. Epub 2017 Jan 4. Nature. 2017. PMID: 28052055
-
Sublimation-driven convection in Sputnik Planitia on Pluto.Nature. 2021 Dec;600(7889):419-423. doi: 10.1038/s41586-021-04095-w. Epub 2021 Dec 15. Nature. 2021. PMID: 34912087
-
The rapid formation of Sputnik Planitia early in Pluto's history.Nature. 2016 Nov 30;540(7631):97-99. doi: 10.1038/nature20586. Nature. 2016. PMID: 27905411
-
Decoding planetary surfaces by counting cracks.Proc Natl Acad Sci U S A. 2025 Mar 11;122(10):e2411738122. doi: 10.1073/pnas.2411738122. Epub 2025 Mar 4. Proc Natl Acad Sci U S A. 2025. PMID: 40035754
-
Large-scale cryovolcanic resurfacing on Pluto.Nat Commun. 2022 Mar 29;13(1):1542. doi: 10.1038/s41467-022-29056-3. Nat Commun. 2022. PMID: 35351895 Free PMC article.
References
Publication types
LinkOut - more resources
Full Text Sources
Other Literature Sources