Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1989 May;43(3):586-594.
doi: 10.1111/j.1558-5646.1989.tb04254.x.

GENETIC CONSEQUENCES OF AUTOPOLYPLOIDY IN TOLMIEA (SAXIFRAGACEAE)

Affiliations

GENETIC CONSEQUENCES OF AUTOPOLYPLOIDY IN TOLMIEA (SAXIFRAGACEAE)

Douglas E Soltis et al. Evolution. 1989 May.

Abstract

Although there is an extensive literature on the genetic attributes of allopolyploids, very little information is available regarding the genetic consequences of autopolyploidy in natural populations. We therefore addressed the major predicted genetic consequences of autopolyploidy using diploid and tetraploid populations of Tolmiea menziesii. Individual autotetraploid plants frequently maintain three or four alleles at single loci: 39% of the 678 tetraploid plants exhibited three or four alleles for at least one locus. Heterozygosity was also significantly higher in autotetraploid populations than in diploid populations: H° = 0.070 and 0.237 in diploid and tetraploid Tolmiea, respectively. Most of the genetic diversity in T. menziesii is maintained within populations (ratio of gene diversity within populations to mean total genetic diversity = 0.636). The total genetic diversity due to differentiation between the two cytotypes is only 0.055. Such a low degree of differentiation between cytotypes would be expected between a diploid and its autotetraploid derivative. Most diploid and all tetraploid populations examined are in genetic equilibrium. Diploid and tetraploid Tolmiea share three or four alleles at six of eight polymorphic loci. This suggests that either autotetraploid Tolmiea was formed via crossing of genetically different diploids (perhaps via a triploid intermediate) or autopolyploidy occurred more than once in separate individual plants, followed by later crossing of autotetraploids.

PubMed Disclaimer

Similar articles

Cited by

LinkOut - more resources