Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease
- PMID: 29899667
- PMCID: PMC5985548
- DOI: 10.1177/1179069518779829
Physiological and Functional Basis of Dopamine Receptors and Their Role in Neurogenesis: Possible Implication for Parkinson's disease
Abstract
Dopamine controls various physiological functions in the brain and periphery by acting on its receptors D1, D2, D3, D4, and D5. Dopamine receptors are G protein-coupled receptors involved in the regulation of motor activity and several neurological disorders such as schizophrenia, bipolar disorder, Parkinson's disease (PD), Alzheimer's disease, and attention-deficit/hyperactivity disorder. Reduction in dopamine content in the nigrostriatal pathway is associated with the development of PD, along with the degeneration of dopaminergic neurons in the substantia nigra region. Dopamine receptors directly regulate neurotransmission of other neurotransmitters, release of cyclic adenosine monophosphate, cell proliferation, and differentiation. Here, we provide an update on recent knowledge about the signalling mechanism, mode of action, and the evidence for the physiological and functional basis of dopamine receptors. We also highlight the pivotal role of these receptors in the modulation of neurogenesis, a possible therapeutic target that might help to slow down the process of neurodegeneration.
Keywords: D1-like dopamine receptors; D2-like dopamine receptors; Parkinson disease; behavioural functions; neurogenesis.
Conflict of interest statement
Declaration of conflicting interests:The author(s) declared no potential conflicts of interest with respect to the research, authorship, and/or publication of this article.
Figures
Similar articles
-
Dopamine receptor activation mitigates mitochondrial dysfunction and oxidative stress to enhance dopaminergic neurogenesis in 6-OHDA lesioned rats: A role of Wnt signalling.Neurochem Int. 2019 Oct;129:104463. doi: 10.1016/j.neuint.2019.104463. Epub 2019 May 10. Neurochem Int. 2019. PMID: 31078578
-
Loss of autoreceptor function in dopaminergic neurons from dopamine D2 receptor deficient mice.Neuroscience. 1997 Jul;79(2):323-7. doi: 10.1016/s0306-4522(97)00135-8. Neuroscience. 1997. PMID: 9200717
-
Dopamine in Parkinson's disease.Clin Chim Acta. 2021 Nov;522:114-126. doi: 10.1016/j.cca.2021.08.009. Epub 2021 Aug 11. Clin Chim Acta. 2021. PMID: 34389279 Review.
-
Dopamine D1 receptor activation improves adult hippocampal neurogenesis and exerts anxiolytic and antidepressant-like effect via activation of Wnt/β-catenin pathways in rat model of Parkinson's disease.Neurochem Int. 2019 Jan;122:170-186. doi: 10.1016/j.neuint.2018.11.020. Epub 2018 Nov 28. Neurochem Int. 2019. PMID: 30500462
-
Dopamine receptors - IUPHAR Review 13.Br J Pharmacol. 2015 Jan;172(1):1-23. doi: 10.1111/bph.12906. Br J Pharmacol. 2015. PMID: 25671228 Free PMC article. Review.
Cited by
-
Changing the Cortical Conductor's Tempo: Neuromodulation of the Claustrum.Front Neural Circuits. 2021 May 13;15:658228. doi: 10.3389/fncir.2021.658228. eCollection 2021. Front Neural Circuits. 2021. PMID: 34054437 Free PMC article. Review.
-
Synapsin III Regulates Dopaminergic Neuron Development in Vertebrates.Cells. 2022 Dec 2;11(23):3902. doi: 10.3390/cells11233902. Cells. 2022. PMID: 36497160 Free PMC article.
-
The Advent of Nutrigenomics: A Narrative Review with an Emphasis on Psychological Disorders.Prev Nutr Food Sci. 2022 Jun 30;27(2):150-164. doi: 10.3746/pnf.2022.27.2.150. Prev Nutr Food Sci. 2022. PMID: 35919568 Free PMC article. Review.
-
O-Cyclic Phytosphingosine-1-Phosphate Protects against Motor Dysfunctions and Glial Cell Mediated Neuroinflammation in the Parkinson's Disease Mouse Models.Antioxidants (Basel). 2022 Oct 26;11(11):2107. doi: 10.3390/antiox11112107. Antioxidants (Basel). 2022. PMID: 36358479 Free PMC article.
-
Enzyme Models-From Catalysis to Prodrugs.Molecules. 2021 May 28;26(11):3248. doi: 10.3390/molecules26113248. Molecules. 2021. PMID: 34071328 Free PMC article. Review.
References
-
- von Campenhausen S, Bornschein B, Wick R, et al. Prevalence and incidence of Parkinson’s disease in Europe. Eur Neuropsychopharmacol. 2005;15:473–490. - PubMed
-
- Pringsheim T, Jette N, Frolkis A, Steeves TD. The prevalence of Parkinson’s disease: a systematic review and meta-analysis. Mov Disord. 2014;29:1583–1590. - PubMed
-
- Bharucha NE, Bharucha EP, Bharucha AE, Bhise AV, Schoenberg BS. Prevalence of Parkinson’s disease in the Parsi community of Bombay, India. Arch Neurol. 1988;45:1321–1323. - PubMed
-
- Santens P, Boon P, Van Roost D, Caemaert J. The pathophysiology of motor symptoms in Parkinson’s disease. Acta Neurol Belg. 2003;103:129–134. - PubMed
-
- Chaudhuri KR, Healy DG, Schapira AH. Non-motor symptoms of Parkinson’s disease: diagnosis and management. Lancet Neurol. 2006;5:235–245. - PubMed
LinkOut - more resources
Full Text Sources
Other Literature Sources