MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules
- PMID: 30846705
- PMCID: PMC6405942
- DOI: 10.1038/s41598-018-37767-1
MTrack: Automated Detection, Tracking, and Analysis of Dynamic Microtubules
Abstract
Microtubules are polar, dynamic filaments fundamental to many cellular processes. In vitro reconstitution approaches with purified tubulin are essential to elucidate different aspects of microtubule behavior. To date, deriving data from fluorescence microscopy images by manually creating and analyzing kymographs is still commonplace. Here, we present MTrack, implemented as a plug-in for the open-source platform Fiji, which automatically identifies and tracks dynamic microtubules with sub-pixel resolution using advanced objection recognition. MTrack provides automatic data interpretation yielding relevant parameters of microtubule dynamic instability together with population statistics. The application of our software produces unbiased and comparable quantitative datasets in a fully automated fashion. This helps the experimentalist to achieve higher reproducibility at higher throughput on a user-friendly platform. We use simulated data and real data to benchmark our algorithm and show that it reliably detects, tracks, and analyzes dynamic microtubules and achieves sub-pixel precision even at low signal-to-noise ratios.
Conflict of interest statement
The authors declare no competing interests.
Figures




Similar articles
-
Quantifying Yeast Microtubules and Spindles Using the Toolkit for Automated Microtubule Tracking (TAMiT).Biomolecules. 2023 Jun 4;13(6):939. doi: 10.3390/biom13060939. Biomolecules. 2023. PMID: 37371519 Free PMC article.
-
Important factors determining the nanoscale tracking precision of dynamic microtubule ends.J Microsc. 2016 Jan;261(1):67-78. doi: 10.1111/jmi.12316. Epub 2015 Oct 7. J Microsc. 2016. PMID: 26444439 Free PMC article.
-
Quantifying yeast microtubules and spindles using the Toolkit for Automated Microtubule Tracking (TAMiT).bioRxiv [Preprint]. 2023 Feb 8:2023.02.07.527544. doi: 10.1101/2023.02.07.527544. bioRxiv. 2023. Update in: Biomolecules. 2023 Jun 04;13(6):939. doi: 10.3390/biom13060939. PMID: 36798368 Free PMC article. Updated. Preprint.
-
Microtubule dynamics reconstituted in vitro and imaged by single-molecule fluorescence microscopy.Methods Cell Biol. 2010;95:221-45. doi: 10.1016/S0091-679X(10)95013-9. Methods Cell Biol. 2010. PMID: 20466138 Review.
-
DeconvolutionLab2: An open-source software for deconvolution microscopy.Methods. 2017 Feb 15;115:28-41. doi: 10.1016/j.ymeth.2016.12.015. Epub 2017 Jan 3. Methods. 2017. PMID: 28057586 Review.
Cited by
-
Quantification of microtubule stutters: dynamic instability behaviors that are strongly associated with catastrophe.Mol Biol Cell. 2022 Mar 1;33(3):ar22. doi: 10.1091/mbc.E20-06-0348. Epub 2022 Feb 2. Mol Biol Cell. 2022. PMID: 35108073 Free PMC article.
-
Automatic extraction of actin networks in plants.PLoS Comput Biol. 2023 Aug 30;19(8):e1011407. doi: 10.1371/journal.pcbi.1011407. eCollection 2023 Aug. PLoS Comput Biol. 2023. PMID: 37647341 Free PMC article.
-
Quantifying Yeast Microtubules and Spindles Using the Toolkit for Automated Microtubule Tracking (TAMiT).Biomolecules. 2023 Jun 4;13(6):939. doi: 10.3390/biom13060939. Biomolecules. 2023. PMID: 37371519 Free PMC article.
-
In Vitro Reconstitution and Imaging of Microtubule Dynamics by Fluorescence and Label-free Microscopy.STAR Protoc. 2020 Nov 24;1(3):100177. doi: 10.1016/j.xpro.2020.100177. eCollection 2020 Dec 18. STAR Protoc. 2020. PMID: 33377071 Free PMC article.
-
Tracing and tracking filamentous structures across scales: A systematic review.Comput Struct Biotechnol J. 2022 Dec 16;21:452-462. doi: 10.1016/j.csbj.2022.12.023. eCollection 2023. Comput Struct Biotechnol J. 2022. PMID: 36618983 Free PMC article. Review.
References
Publication types
MeSH terms
LinkOut - more resources
Full Text Sources