Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
Review
. 1986:44:641-61.

Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue

  • PMID: 3518350
Review

Extracellular calcium and potassium concentration changes in chronic epileptic brain tissue

U Heinemann et al. Adv Neurol. 1986.

Abstract

Repetitive electrical stimulation and application of excitatory amino acids lead to decreases in extracellular Ca2+ concentration and to rises in extracellular K+ concentration [( Ca2+]o, [K+]o) with a typical laminar distribution in a given neo- or allocortical structure. These ionic changes result from transmembrane ion fluxes along their respective electrochemical gradients. Epileptogenic drugs that impair repolarizing K+ conductances or inhibitory synaptic transmission enhance such extracellular ionic changes, but they do not alter the laminar distribution of [K+]o and [Ca2+]o changes. Enhanced [Ca2+]o concentration changes are also observed in chronic epilepsies such as the chronic alumina cream and cobalt focus, the kindling epilepsy, and during photically induced seizures in the baboon Papio papio. In chronic epilepsies, the sites of maximal [Ca2+]o changes shift to other layers, suggesting changes in the distribution of ion channels over the surface of nerve cells that may be involved in epileptogenesis in chronic epilepsies. The K+ and Ca2+ concentration changes associated with seizure contribute to the generation and spread of epileptic activity. This is demonstrated by the fact that lowering of extracellular free calcium concentration can induce spreading epileptiform activity in the absence of chemical synaptic transmission, with [K+]o rises preceding epileptiform activity.

PubMed Disclaimer

Similar articles

Cited by

Publication types

MeSH terms