Skip to main page content
U.S. flag

An official website of the United States government

Dot gov

The .gov means it’s official.
Federal government websites often end in .gov or .mil. Before sharing sensitive information, make sure you’re on a federal government site.

Https

The site is secure.
The https:// ensures that you are connecting to the official website and that any information you provide is encrypted and transmitted securely.

Access keys NCBI Homepage MyNCBI Homepage Main Content Main Navigation
. 1997 Feb 14;266(1):8-14.
doi: 10.1006/jmbi.1996.0800.

Steric-model for activation of muscle thin filaments

Affiliations
Free article

Steric-model for activation of muscle thin filaments

P Vibert et al. J Mol Biol. .
Free article

Abstract

The structural basis of thin filament-linked regulation of muscle contraction is not yet understood. Here we have used electron microscopy and three-dimensional image reconstruction to observe the effects of Ca2+ and myosin head binding on thin filament structure, especially on the position of tropomyosin. Thin filaments isolated in EGTA were treated with Ca2+ or myosin heads (S-1) and negatively stained. Tropomyosin strands were directly visualized in electron micrographs, and distinct EGTA, Ca2+ and S-1-dependent positions were apparent in reconstructions. By fitting reconstructions to the atomic model of F-actin, clusters of amino acids on actin lying beneath tropomyosin were defined under each set of conditions. In the presence of Ca2+, tropomyosin moved 25 degrees away from its low Ca2+ position, exposing most, but not all, of the previously blocked myosin-binding sites. Saturation of filaments with myosin heads produced a further 10 degrees shift in tropomyosin position, thereby exposing the entire myosin-binding site. Our results thus suggest that full switching-on of thin filaments by reversal of steric-blocking requires both Ca2+ and the binding of myosin heads, acting in sequence. By using filaments which were partially decorated with heads, tropomyosin movement was shown to be cooperative, and the size of the actin-tropomyosin cooperative unit was estimated directly. Our results provide direct structural support for previous models of thin filament activation based on kinetics of actin-myosin interaction.

PubMed Disclaimer

Similar articles

Cited by

Publication types

LinkOut - more resources