Skip to main content

Part of the book series: New Techniques in Surgery Series ((NEWTECHN,volume 7))

We live in exciting times and the pace of change in medical and surgical technology has never been more rapid. Gordon Moore’s 1965 law stated that the power (memory) of computers would double every 18 months.1 Almost every measure of the capabilities of digital electronic devices remains linked to Moore’s law: processing speed, memory capacity, and even the number and size of pixels in digital cameras. This law continues to be true today in the field of surgical robotics. What have changed while technology continues to expand are the demands and expectations of our increasingly well-informed, demanding, and internet-literate patients. Patients want the best for themselves and their families and market forces themselves are driving expansion and development in many instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

') var buybox = document.querySelector("[data-id=id_"+ timestamp +"]").parentNode var buyingOptions = buybox.querySelectorAll(".buying-option") ;[].slice.call(buyingOptions).forEach(initCollapsibles) var buyboxMaxSingleColumnWidth = 480 function initCollapsibles(subscription, index) { var toggle = subscription.querySelector(".buying-option-price") subscription.classList.remove("expanded") var form = subscription.querySelector(".buying-option-form") var priceInfo = subscription.querySelector(".price-info") var buyingOption = toggle.parentElement if (toggle && form && priceInfo) { toggle.setAttribute("role", "button") toggle.setAttribute("tabindex", "0") toggle.addEventListener("click", function (event) { var expandedBuyingOptions = buybox.querySelectorAll(".buying-option.expanded") var buyboxWidth = buybox.offsetWidth ;[].slice.call(expandedBuyingOptions).forEach(function(option) { if (buyboxWidth buyboxMaxSingleColumnWidth) { toggle.click() } else { if (index === 0) { toggle.click() } else { toggle.setAttribute("aria-expanded", "false") form.hidden = "hidden" priceInfo.hidden = "hidden" } } }) } initialStateOpen() if (window.buyboxInitialised) return window.buyboxInitialised = true initKeyControls() })()

Institutional subscriptions

Similar content being viewed by others

References

  1. GE. Cramming more components onto integrated circuits. Electron Mag. 1965;38:8

    Google Scholar 

  2. Peplinski R. Past, present and future of the Da Vinci robot. 2nd UK Robotic Urology Course; 2006

    Google Scholar 

  3. Wagner C, Stylopoulos N, Howe R. The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the IEEE 10th Symposium on Haptic Interfaces for Virtual Environmental &Teleoperator systems; 2002

    Google Scholar 

  4. Deml B, Ortmaier T, Seibold U. The touch, and feel in minimally invasive surgery. In: IEEE International Workshop on Haptic Audio Visual Environment, and Their Applications, Ottawa, ON; 2005:33–38

    Chapter  Google Scholar 

  5. Seibold U, Kuebler B, Hirzinger G. Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. In: Proceeding of the IEEE International Conference on Robotics, and Automation, Barcelona, Spain; 2005:496–501

    Chapter  Google Scholar 

  6. Menciassi A, Eisinberg A, Carrozza M et al Force sensing microinstrument for measuring tissue properties, and pulse in microsurgery. IEEE/ASME Trans Mechatron. 2003;8:10

    Article  Google Scholar 

  7. Ottermo M, Stavdahl O, Johansen T. Palpation instrument for augmented minimally invasive surgery. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots, and Systems, Sendai, Japan; 2004:3960–3964

    Google Scholar 

  8. Dargahi J, Parameswaran M, Payandeh S. A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication, and experiments. J Microelectromech Syst. 2000;9:329

    Article  CAS  Google Scholar 

  9. Peirs J, Clijnen J, Reynaerts D, et al A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sensors Actuators A. 2004;115:447

    Article  Google Scholar 

  10. Sutherland G, McBeth P, Louw D. NeuroArm: An MR Compatible Robot for Microsurgery. Amsterdam: Elsevier Science; 2003 International congress series, 1256: 504

    Google Scholar 

  11. Okamura AM. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Rob Int J. 2004;31(6):499–508

    Article  Google Scholar 

  12. Brouwer I, Ustin J, Bentley L, et al Measuring in-vivo animal soft tissue properties for haptic modelling in surgical simulation. Stud Health Technol Inform. 2001;81:69–74

    CAS  PubMed  Google Scholar 

  13. Ottensmeyer M. In-vivo measurement of solid organ visco-elastic properties. Stud Heatlh Technol Inform. 2002;85:328

    Google Scholar 

  14. Brown J, Rosen J, Kim Y, et al In-vivo and in-situ compressive properties of porcine abdominal soft tissues. Stud Health Technol Inform. 2003;94:26–32

    PubMed  Google Scholar 

  15. Wellman P, Howe R. Modelling probe and tissue interaction for tumour feature extraction. In: ASME summer Bioengineering conference, Sun River, OR; 1997

    Google Scholar 

  16. Egorov V, Ayrapetyan S, Sarvazyan AP. Prostate mechanical imaging: 3-D image composition and feature calculations. IEEE Trans Med Imag. 2006;25(10):1329–1340

    Article  Google Scholar 

  17. Miller AP, Peine WJ, Son JS, et al Tactile imaging system for localizing lung nodules during video-assisted thoracoscopic surgery. In: Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy; 2007:2996–3001

    Google Scholar 

  18. Wellman SP. Tactile imaging of breast masses: first clinical report. Arch Surg. 2001;136:204–208

    Article  CAS  PubMed  Google Scholar 

  19. Beasley RA, Howe RD. Tactile tracking of arteries in robotic surgery. Proc IEEE Int Conf Rob Autom. 2002;4:3801–3806

    Google Scholar 

  20. Levinson SF, Shinagawa M, Sato T. Sonoelastic determination of human skeletal muscle elasticity. J Biomech. 1995;28(10):1145–1154

    Article  CAS  PubMed  Google Scholar 

  21. Taylor LS, Porter BC, Rubens DJ, Parker KJ. Three-dimensional sonoelastography: principles and practices. Physics Med Biol. 2000;45(6):1477–1494

    Article  CAS  Google Scholar 

  22. Konofagou EE, Hynynen K. Localized harmonic motion imaging theory, simulations and experiments. Ultrasound Med Biol. 2003;29:1405–1413

    Article  PubMed  Google Scholar 

  23. Shan B, Pelegri A, Maleke C, Konofagou E. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging. J Biomech. 2008;41(10):2150–2158

    Article  PubMed  Google Scholar 

  24. Manducam A.: non-invasive mapping of tissue elasticity. Med Image Anal. 2000;5(4):237–254

    Article  Google Scholar 

  25. Noonan D, Liu H, Zweiri Y et al A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery. In: International Conference on Robotics And Automation, Rome, Italy; 2007

    Google Scholar 

  26. Murphy D, Challacombe B, Nedas T, et al Equipment and technology in robotics. Arch Esp Urol. 2007;60(4):349–355

    Article  PubMed  Google Scholar 

  27. Liu H, Noonan DP, Zweiri YH, Althoefer K, Seneviratne LD. The development of nonlinear viscoelastic model for the application of soft tissue identification. In: IEEE/RSJ International Conference on Intelligent Robots and Systems; 2007:208–213

    Google Scholar 

  28. Puangmali P, Althoefer K, Seneviratene LD, Murphy D, Dasgupta P. State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sens J. 2008;8(4):371–381

    Article  Google Scholar 

  29. Al-jaafreh TM, Seneviratne LD, Zweiri YH, Althoefer K. Modelling soft tissue-mechatronic tool interactions during indentation. Int J Model, Identif Control (IJMIC). 2008;4(4):337–347

    Google Scholar 

  30. Al-ja’afreh TM, Zweiri YH, Seneviratne LD, Althoefer K. A new soft tissue indentation model for estimating “force-displacement” characteristics using circular indenters. Proceedings of the Institution of Mechanical Engineers (IMechE), Part H. J Eng Med. 2008;222(5):805–815

    Article  Google Scholar 

  31. Althoefer K, Zbyszewski D, Liu H, et al Air-cushion force sensitive probe for soft tissue investigation during minimally invasive surgery. In: 7th IEEE Conference on Sensors, Lecce, Italy; 2008 [unconditionally accepted for inclusion in 7th IEEE Conference on Sensors]

    Google Scholar 

  32. Zbyszewski D, Liu H, Puangmali P, et al Wheel/tissue force interaction: a new concept for soft tissue diagnosis during MIS. In: Proceedings of 2008 International IEEE Engineering in Medical and Biological Society Conference, Vancouver, BC, Canada;2008

    Google Scholar 

  33. Puangmali P, Liu H, Althoefer K, Seneviratne LD. Optical fiber sensor for soft tissue investigation during minimally invasive surgery. In: IEEE International Conference on Robotics and Automation (ICRA’08), Pasadena, CA; 2008:2934–2939

    Google Scholar 

  34. Challacombe B, Patriciu A, Glass J, et al A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithotomy. Comput Aided Surg. 2005;10(3):165–171

    Article  PubMed  Google Scholar 

  35. Su L-M, Stoianovici D, Jarrett TW, et al Robotic percutaneous access to the kidney; comparison with standard manual access. J Endourol. 2002;16:471–475

    Article  PubMed  Google Scholar 

  36. Solomon SB, Patriciu A, Stoianovici DS. Tumor ablation treatment planning coupled to robotic implementation: a feasibility study. J Vasc Interv Radiol. 2006;17(5):903–907

    Article  PubMed  Google Scholar 

  37. Stoianovici D, Patriciu A, Mazilu D, Petrisor D, Kavoussi L. A new type of motor: pneumatic step motor. IEEE/ASME Trans Mechatron. 2007;12(1):98–106 http://urology.jhu.edu/urobotics/pub/2007-stoianovici-tmech.pdf

    Article  Google Scholar 

  38. Stoianovici D, Song D, Petrisor D, et al “MRI stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16:241–248

    Article  PubMed  Google Scholar 

  39. Muntener M, Patriciu A, Petrisor D, et al Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology. 2008;247(2):543–549

    Article  PubMed  Google Scholar 

  40. Shah S, Kapoor A, Ding J, et al Robotically assisted needle driver: evaluation of safety release, force profiles, and needle spin in a swine abdominal model. Int J CARS. 2008;3(2):173–179

    Article  Google Scholar 

  41. Cavalcanti A. Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Trans Nanotechnol. 2003;2:82.

    Article  Google Scholar 

  42. Freitas RA Jr. Nanomedicine – basic capabilities. www.nanomedicine.com; 1999

  43. Cavalcanti A, Freitas RA Jr. Nanorobotics control design: a collective behaviour approach for medicine. IEEE Trans Nanobiosci. 2005;4:133

    Article  Google Scholar 

  44. Srivastava N, Banerjee K. Performance analysis of carbon nanotube interconnects for VLSI applications. In: IEEE/ACM ICCAD International Conference on Computer-Aided Design; 2005:383–390

    Google Scholar 

  45. Bogaerts W, Baets R, Dumon P, et al Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol. 2005;23:401

    Article  CAS  Google Scholar 

  46. Cavalcanti A, Shrinzadeh B, Freitas RA, et al Medical Nanorobot Architecture Based on Nanobioelectronics. Recent Patents on Nanotechnology. 1st ed. Pennington: Bentham Science; 2007

    Google Scholar 

  47. Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed Nanotechnol Biol Med. 2005;1:101–109

    Google Scholar 

  48. Janda E, Nevolo M, Lehmann K, et al Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006;25:7117

    Article  CAS  PubMed  Google Scholar 

  49. Couvreur P, Gref R, Andrieux K, et al Nanotechnologies for drug delivery: application to cancer and autoimmune diseases. Progress in solid state. Chemistry. 2006;34:231

    CAS  Google Scholar 

  50. Hochberger J, Lamade W. Transgastric surgery in the abdomen: the dawn of a new era? Gastrointest Endosc. 2005;62(2):293–296

    Article  PubMed  Google Scholar 

  51. Ota T, Patronik NA, Schwartzman D, Riviere CN, Zenati MA. Minimally invasive epicardial injections using a novel semiautonomous robotic device. Circulation. 2008;118(14 suppl):S115–S120

    Article  PubMed  Google Scholar 

Download references

Acknowledgment

The authors would like to acknowledge contributions from Mr. Hongbin Liu, Mr. Dinusha Zzbyszewski, Mr. David Noonan, Professor Lakmal Seneviratne, and Dr. Adriano Cavalcanti.

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag London

About this chapter

Cite this chapter

Challacombe, B., Althoefer, K., Stoianovici, D. (2010). Emerging Robotics. In: Dasgupta, P., Fitzpatrick, J., Kirby, R., Gill, I.S. (eds) New Technologies in Urology. New Techniques in Surgery Series, vol 7. Springer, London. https://doi.org/10.1007/978-1-84882-178-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-84882-178-1_7

  • Publisher Name: Springer, London

  • Print ISBN: 978-1-84882-177-4

  • Online ISBN: 978-1-84882-178-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics