GE. Cramming more components onto integrated circuits. Electron Mag. 1965;38:8
Google Scholar
Peplinski R. Past, present and future of the Da Vinci robot. 2nd UK Robotic Urology Course; 2006
Google Scholar
Wagner C, Stylopoulos N, Howe R. The role of force feedback in surgery: analysis of blunt dissection. In: Proceedings of the IEEE 10th Symposium on Haptic Interfaces for Virtual Environmental &Teleoperator systems; 2002
Google Scholar
Deml B, Ortmaier T, Seibold U. The touch, and feel in minimally invasive surgery. In: IEEE International Workshop on Haptic Audio Visual Environment, and Their Applications, Ottawa, ON; 2005:33–38
Chapter
Google Scholar
Seibold U, Kuebler B, Hirzinger G. Prototype of instrument for minimally invasive surgery with 6-axis force sensing capability. In: Proceeding of the IEEE International Conference on Robotics, and Automation, Barcelona, Spain; 2005:496–501
Chapter
Google Scholar
Menciassi A, Eisinberg A, Carrozza M et al Force sensing microinstrument for measuring tissue properties, and pulse in microsurgery. IEEE/ASME Trans Mechatron. 2003;8:10
Article
Google Scholar
Ottermo M, Stavdahl O, Johansen T. Palpation instrument for augmented minimally invasive surgery. In: Proceedings of the IEEE/RSJ International Conference on Intelligent Robots, and Systems, Sendai, Japan; 2004:3960–3964
Google Scholar
Dargahi J, Parameswaran M, Payandeh S. A micromachined piezoelectric tactile sensor for an endoscopic grasper-theory, fabrication, and experiments. J Microelectromech Syst. 2000;9:329
Article
CAS
Google Scholar
Peirs J, Clijnen J, Reynaerts D, et al A micro optical force sensor for force feedback during minimally invasive robotic surgery. Sensors Actuators A. 2004;115:447
Article
Google Scholar
Sutherland G, McBeth P, Louw D. NeuroArm: An MR Compatible Robot for Microsurgery. Amsterdam: Elsevier Science; 2003 International congress series, 1256: 504
Google Scholar
Okamura AM. Methods for haptic feedback in teleoperated robot-assisted surgery. Ind Rob Int J. 2004;31(6):499–508
Article
Google Scholar
Brouwer I, Ustin J, Bentley L, et al Measuring in-vivo animal soft tissue properties for haptic modelling in surgical simulation. Stud Health Technol Inform. 2001;81:69–74
CAS
PubMed
Google Scholar
Ottensmeyer M. In-vivo measurement of solid organ visco-elastic properties. Stud Heatlh Technol
Inform. 2002;85:328
Google Scholar
Brown J, Rosen J, Kim Y, et al In-vivo and in-situ compressive properties of porcine abdominal soft tissues. Stud Health Technol Inform. 2003;94:26–32
PubMed
Google Scholar
Wellman P, Howe R. Modelling probe and tissue interaction for tumour feature extraction. In: ASME summer Bioengineering conference, Sun River, OR; 1997
Google Scholar
Egorov V, Ayrapetyan S, Sarvazyan AP. Prostate mechanical imaging: 3-D image composition and feature calculations. IEEE Trans Med Imag. 2006;25(10):1329–1340
Article
Google Scholar
Miller AP, Peine WJ, Son JS, et al Tactile imaging system for localizing lung nodules during video-assisted thoracoscopic surgery. In: Proceedings of the IEEE International Conference on Robotics and Automation, Rome, Italy; 2007:2996–3001
Google Scholar
Wellman SP. Tactile imaging of breast masses: first clinical report. Arch Surg. 2001;136:204–208
Article
CAS
PubMed
Google Scholar
Beasley RA, Howe RD. Tactile tracking of arteries in robotic surgery. Proc IEEE Int Conf Rob Autom. 2002;4:3801–3806
Google Scholar
Levinson SF, Shinagawa M, Sato T. Sonoelastic determination of human skeletal muscle elasticity. J Biomech. 1995;28(10):1145–1154
Article
CAS
PubMed
Google Scholar
Taylor LS, Porter BC, Rubens DJ, Parker KJ. Three-dimensional sonoelastography: principles and practices. Physics Med Biol. 2000;45(6):1477–1494
Article
CAS
Google Scholar
Konofagou EE, Hynynen K. Localized harmonic motion imaging theory, simulations and experiments. Ultrasound Med Biol. 2003;29:1405–1413
Article
PubMed
Google Scholar
Shan B, Pelegri A, Maleke C, Konofagou E. A mechanical model to compute elastic modulus of tissues for harmonic motion imaging. J Biomech. 2008;41(10):2150–2158
Article
PubMed
Google Scholar
Manducam A.: non-invasive mapping of tissue elasticity. Med Image Anal. 2000;5(4):237–254
Article
Google Scholar
Noonan D, Liu H, Zweiri Y et al A dual-function wheeled probe for tissue viscoelastic property identification during minimally invasive surgery. In: International Conference on Robotics And Automation, Rome, Italy; 2007
Google Scholar
Murphy D, Challacombe B, Nedas T, et al Equipment and technology in robotics. Arch Esp Urol. 2007;60(4):349–355
Article
PubMed
Google Scholar
Liu H, Noonan DP, Zweiri YH, Althoefer K, Seneviratne LD. The development of nonlinear viscoelastic model for the application of soft tissue identification. In: IEEE/RSJ International Conference on Intelligent Robots and Systems; 2007:208–213
Google Scholar
Puangmali P, Althoefer K, Seneviratene LD, Murphy D, Dasgupta P. State-of-the-art in force and tactile sensing for minimally invasive surgery. IEEE Sens J. 2008;8(4):371–381
Article
Google Scholar
Al-jaafreh TM, Seneviratne LD, Zweiri YH, Althoefer K. Modelling soft tissue-mechatronic tool interactions during indentation. Int J Model, Identif Control (IJMIC). 2008;4(4):337–347
Google Scholar
Al-ja’afreh TM, Zweiri YH, Seneviratne LD, Althoefer K. A new soft tissue indentation model for estimating “force-displacement” characteristics using circular indenters. Proceedings of the Institution of Mechanical Engineers (IMechE), Part H. J Eng Med. 2008;222(5):805–815
Article
Google Scholar
Althoefer K, Zbyszewski D, Liu H, et al Air-cushion force sensitive probe for soft tissue investigation during minimally invasive surgery. In: 7th IEEE Conference on Sensors, Lecce, Italy; 2008 [unconditionally accepted for inclusion in 7th IEEE Conference on Sensors]
Google Scholar
Zbyszewski D, Liu H, Puangmali P, et al Wheel/tissue force interaction: a new concept for soft tissue diagnosis during MIS. In: Proceedings of 2008 International IEEE Engineering in Medical and Biological Society Conference, Vancouver, BC, Canada;2008
Google Scholar
Puangmali P, Liu H, Althoefer K, Seneviratne LD. Optical fiber sensor for soft tissue investigation during minimally invasive surgery. In: IEEE International Conference on Robotics and Automation (ICRA’08), Pasadena, CA; 2008:2934–2939
Google Scholar
Challacombe B, Patriciu A, Glass J, et al A randomized controlled trial of human versus robotic and telerobotic access to the kidney as the first step in percutaneous nephrolithotomy. Comput Aided Surg. 2005;10(3):165–171
Article
PubMed
Google Scholar
Su L-M, Stoianovici D, Jarrett TW, et al Robotic percutaneous access to the kidney; comparison with standard manual access. J Endourol. 2002;16:471–475
Article
PubMed
Google Scholar
Solomon SB, Patriciu A, Stoianovici DS. Tumor ablation treatment planning coupled to robotic implementation: a feasibility study. J Vasc Interv Radiol. 2006;17(5):903–907
Article
PubMed
Google Scholar
Stoianovici D, Patriciu A, Mazilu D, Petrisor D, Kavoussi L. A new type of motor: pneumatic step motor. IEEE/ASME Trans Mechatron. 2007;12(1):98–106 http://urology.jhu.edu/urobotics/pub/2007-stoianovici-tmech.pdf
Article
Google Scholar
Stoianovici D, Song D, Petrisor D, et al “MRI stealth” robot for prostate interventions. Minim Invasive Ther Allied Technol. 2007;16:241–248
Article
PubMed
Google Scholar
Muntener M, Patriciu A, Petrisor D, et al Transperineal prostate intervention: robot for fully automated MR imaging–system description and proof of principle in a canine model. Radiology. 2008;247(2):543–549
Article
PubMed
Google Scholar
Shah S, Kapoor A, Ding J, et al Robotically assisted needle driver: evaluation of safety release, force profiles, and needle spin in a swine abdominal model. Int J CARS. 2008;3(2):173–179
Article
Google Scholar
Cavalcanti A. Assembly automation with evolutionary nanorobots and sensor-based control applied to nanomedicine. IEEE Trans Nanotechnol. 2003;2:82.
Article
Google Scholar
Freitas RA Jr. Nanomedicine – basic capabilities. www.nanomedicine.com; 1999
Cavalcanti A, Freitas RA Jr. Nanorobotics control design: a collective behaviour approach for medicine. IEEE Trans Nanobiosci. 2005;4:133
Article
Google Scholar
Srivastava N, Banerjee K. Performance analysis of carbon nanotube interconnects for VLSI applications. In: IEEE/ACM ICCAD International Conference on Computer-Aided Design; 2005:383–390
Google Scholar
Bogaerts W, Baets R, Dumon P, et al Nanophotonic waveguides in silicon-on-insulator fabricated with CMOS technology. J Lightwave Technol. 2005;23:401
Article
CAS
Google Scholar
Cavalcanti A, Shrinzadeh B, Freitas RA, et al Medical Nanorobot Architecture Based on Nanobioelectronics. Recent Patents on Nanotechnology. 1st ed. Pennington: Bentham Science; 2007
Google Scholar
Kawasaki ES, Player A. Nanotechnology, nanomedicine, and the development of new, effective therapies for cancer. Nanomed Nanotechnol Biol Med. 2005;1:101–109
Google Scholar
Janda E, Nevolo M, Lehmann K, et al Raf plus TGFbeta-dependent EMT is initiated by endocytosis and lysosomal degradation of E-cadherin. Oncogene. 2006;25:7117
Article
CAS
PubMed
Google Scholar
Couvreur P, Gref R, Andrieux K, et al Nanotechnologies for drug delivery: application to cancer and autoimmune diseases. Progress in solid state. Chemistry. 2006;34:231
CAS
Google Scholar
Hochberger J, Lamade W. Transgastric surgery in the abdomen: the dawn of a new era? Gastrointest Endosc. 2005;62(2):293–296
Article
PubMed
Google Scholar
Ota T, Patronik NA, Schwartzman D, Riviere CN, Zenati MA. Minimally invasive epicardial injections using a novel semiautonomous robotic device. Circulation. 2008;118(14 suppl):S115–S120
Article
PubMed
Google Scholar