Skip to main content

Advertisement

Log in

Astronomical bounds on a future Big Freeze singularity

  • Published:
Gravitation and Cosmology Aims and scope Submit manuscript

Abstract

It was recently found that dark energy in the form of phantom generalized Chaplygin gas may lead to a new form of a cosmic doomsday, the Big Freeze singularity. Like the Big Rip singularity, the Big Freeze singularity would also take place at finite future cosmic time, but, unlike the Big Rip, it happens for a finite scale factor. Our goal is to test if a universe filled with phantom generalized Chaplygin gas can conform to the data of astronomical observations. We shall see that if the universe is only filled with generalized phantom Chaplygin gas with the equation of state p = −c 2 s 2/ρ α with α < −1, then such a model cannot be matched to the observational data; generally speaking, such a universe has an infinite age. To construct more realistic models, one actually need to add dark matter. This procedure results in cosmological scenarios which do not contradict the values of universe age and expansion rate and allow one to estimate how long we are now from the future Big Freeze doomsday.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. G. Felder, A. Frolov, L. Kofman, and A. Linde, Phys. Rev. D 66, 023507 (2002), hep-th/0202017.

    Google Scholar 

  2. A. A. Starobinsky, Grav. Cosmol. 6, 157 (2000), tastro-ph/9912054; R. R. Caldwell, Phys. Lett. 545B 23 (2002); R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg, Phys. Rev. Lett. 91, 071301 (2003); P. F. González-Díaz, Phys. Lett. 586B 1 (2004); Phys. Rev. D 69, 063522 (2004); S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D 68, 023509 (2003); S. Nojiri and S. D. Odintsov, Phys. Rev. D 70, 103522 (2004).

    MATH  ADS  Google Scholar 

  3. J. D. Barrow, Class. Quantum Grav. 21, L79 (2004), gr-qc/0403084; J. D. Barrow, Class. Quantum Grav. 21, 5619 (2004), gr-qc/0409062; J. D. Barrow and C.G. Tsagas, Class. Quantum Grav. 22, 1563 (2005), gr-qc/0411045.

    Article  MATH  MathSciNet  ADS  Google Scholar 

  4. D. N. Page, hep-th/0610079, hep-th/0612137.

  5. M. Bouhmadi-Lopez, P. F. González-Díaz, and P. Martin-Moruno, gr-qc/0612135.

  6. S. Nojiri, S. D. Odintsov, and S. Tsujikawa, Phys. Rev. D 71, 063004 (2005), hep-th/0501025.

  7. M. Bouhmadi-Lopez and J. A. Jimenez Madrid, JCAP 0505, 005 (2005), astro-ph/0404540.

    ADS  Google Scholar 

  8. I.M. Khalatnikov, Phys. Lett. 563B, 123 (2003).

    MathSciNet  ADS  Google Scholar 

  9. A. Yu. Kamenshchik, U. Moschella, and V. Pasquier, Phys. Lett. 511B, 265 (2001), gr-qc/0103004; N. Bilic, G. B. Tupper, and R. D. Viollier, Phys. Lett. 535B, 17 (2002), astro-ph/0111325; M. C. Bento, O. Bertolami, and A. A. Sen, Phys. Rev.D66, 043507 (2002), gr-qc/0202064.

    ADS  Google Scholar 

  10. S. Cappozziello, S. Nojiri, and S. D. Odintsov, Phys. Lett. 634B, 93 (2006), hep-th/0512118.

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. V. Yurov.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yurov, A.V., Astashenok, A.V. & González-Díaz, P.F. Astronomical bounds on a future Big Freeze singularity. Gravit. Cosmol. 14, 205–212 (2008). https://doi.org/10.1134/S0202289308030018

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0202289308030018

PACS numbers