Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • Software and Tools
    • School Learning
    • Practice Coding Problems
  • Go Premium
  • Python Tutorial
  • Interview Questions
  • Python Quiz
  • Python Glossary
  • Python Projects
  • Practice Python
  • Data Science With Python
  • Python Web Dev
  • DSA with Python
  • Python OOPs
Open In App
Next Article:
Factory Method - Python Design Patterns
Next article icon

Command Method - Python Design Patterns

Last Updated : 12 Jul, 2025
Summarize
Comments
Improve
Suggest changes
Share
Like Article
Like
Report

Command Method is Behavioral Design Pattern that encapsulates a request as an object, thereby allowing for the parameterization of clients with different requests and the queuing or logging of requests. Parameterizing other objects with different requests in our analogy means that the button used to turn on the lights can later be used to turn on stereo or maybe open the garage door. It helps in promoting the "invocation of a method on an object" to full object status. Basically, it encapsulates all the information needed to perform an action or trigger an event.

Problem without using Command Method

Imagine you are working on a code editor. Your current task is to add the new buttons in the toolbar of the editor for various different operations. It's definitely easy to create a single Button Class that can be used for the buttons. As we know that all the buttons used in the editor look similar, so what should we do? Should we create a lot of sub-classes for each place where the button is used?

Problem-without-Command-method
Problem-without-Command-method

Solution Using Command Method

Let's have a look at the solution for the above-described problem. It's always a good idea to divide the software into different layers which helps in easy coding as well as debugging. The command pattern suggests that objects shouldn’t send these requests directly. Instead, you should extract all of the request details, such as the object being called, the name of the method and the list of arguments into a separate command class with a single method that triggers this request.

Python3
"""Use built-in abc to implement Abstract classes and methods"""
from abc import ABC, abstractmethod

"""Class Dedicated to Command"""
class Command(ABC):
    
    """constructor method"""
    def __init__(self, receiver):
        self.receiver = receiver
    
    """process method"""
    def process(self):
        pass

"""Class dedicated to Command Implementation"""
class CommandImplementation(Command):
    
    """constructor method"""
    def __init__(self, receiver):
        self.receiver = receiver

    """process method"""
    def process(self):
        self.receiver.perform_action()

"""Class dedicated to Receiver"""
class Receiver:
    
    """perform-action method"""
    def perform_action(self):
        print('Action performed in receiver.')

"""Class dedicated to Invoker"""
class Invoker:
    
    """command method"""
    def command(self, cmd):
        self.cmd = cmd

    """execute method"""
    def execute(self):
        self.cmd.process()

"""main method"""
if __name__ == "__main__":
    
    """create Receiver object"""
    receiver = Receiver()
    cmd = CommandImplementation(receiver)
    invoker = Invoker()
    invoker.command(cmd)
    invoker.execute()

Output

Action performed in receiver.

Class Diagram

Following is the class diagram for the Command method

Class-diagram-Command-Method
Class-diagram-Command-Method

Advantages 

  • Open/Closed Principle: We can introduce the new commands into the application without breaking the existing client's code.
  • Single Responsibility Principle: It's really easy to decouple the classes here that invoke operations from other classes.
  • Implementable UNDO/REDO: It's possible to implement the functionalities of UNDO/REDO with the help of Command method.
  • Encapsulation: It helps in encapsulating all the information needed to perform an action or an event.

Disadvantages

  • Complexity Increases: The complexity of the code increases as we are introducing certain layers between the senders and the receivers.
  • Quantity of classes increases: For each individual command, the quantity of the classes increases.
  • Concrete Command: Every individual command is a ConcreteCommand class that increases the volume of the classes for implementation and maintenance.

Applicability 

  • Implementing Reversible operations: As the Command method provides the functionalities for UNDO/REDO operations, we can possibly reverse the operations.
  • Parameterization: It's always preferred to use Command method when we have to parameterize the objects with the operations.

Further Read - Command Method in Java
 


Next Article
Factory Method - Python Design Patterns

C

chaudhary_19
Improve
Article Tags :
  • Python
  • python-design-pattern
Practice Tags :
  • python

Similar Reads

    Python Design Patterns Tutorial
    Design patterns in Python are communicating objects and classes that are customized to solve a general design problem in a particular context. Software design patterns are general, reusable solutions to common problems that arise during the design and development of software. They represent best pra
    7 min read

    Creational Software Design Patterns in Python

    Factory Method - Python Design Patterns
    Factory Method is a Creational Design Pattern that allows an interface or a class to create an object, but lets subclasses decide which class or object to instantiate. Using the Factory method, we have the best ways to create an object. Here, objects are created without exposing the logic to the cli
    4 min read
    Abstract Factory Method - Python Design Patterns
    Abstract Factory Method is a Creational Design pattern that allows you to produce the families of related objects without specifying their concrete classes. Using the abstract factory method, we have the easiest ways to produce a similar type of many objects. It provides a way to encapsulate a group
    4 min read
    Builder Method - Python Design Patterns
    Builder Method is a Creation Design Pattern which aims to "Separate the construction of a complex object from its representation so that the same construction process can create different representations." It allows you to construct complex objects step by step. Here using the same construction code
    5 min read
    Prototype Method Design Pattern in Python
    The Prototype Method Design Pattern in Python enables the creation of new objects by cloning existing ones, promoting efficient object creation and reducing overhead. This pattern is particularly useful when the cost of creating a new object is high and when an object's initial state or configuratio
    6 min read
    Singleton Method - Python Design Patterns
    Prerequisite: Singleton Design pattern | IntroductionWhat is Singleton Method in PythonSingleton Method is a type of Creational Design pattern and is one of the simplest design patterns available to us. It is a way to provide one and only one object of a particular type. It involves only one class t
    5 min read

    Structural Software Design Patterns in Python

    Adapter Method - Python Design Patterns
    Adapter method is a Structural Design Pattern which helps us in making the incompatible objects adaptable to each other. The Adapter method is one of the easiest methods to understand because we have a lot of real-life examples that show the analogy with it. The main purpose of this method is to cre
    4 min read
    Bridge Method - Python Design Patterns
    The bridge method is a Structural Design Pattern that allows us to separate the Implementation Specific Abstractions and Implementation Independent Abstractions from each other and can be developed considering as single entities.The bridge Method is always considered as one of the best methods to or
    5 min read
`; $(commentSectionTemplate).insertBefore(".article--recommended"); } loadComments(); }); }); function loadComments() { if ($("iframe[id*='discuss-iframe']").length top_of_element && top_of_screen articleRecommendedTop && top_of_screen articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences