Skip to content
-
Data analysis using Pandas
Last Updated :
11 Jul, 2025
Pandas are the most popular python library that is used for data analysis. It provides highly optimized performance with back-end source code purely written in C or Python.
We can analyze data in Pandas with:
Pandas Series
Series in Pandas is one dimensional(1-D) array defined in pandas that can be used to store any data type.
Creating Pandas Series
Python3
# Program to create series
# Import Panda Library
import pandas as pd
# Create series with Data, and Index
a = pd.Series(Data, index=Index)
Here, Data can be:
- A Scalar value which can be integerValue, string
- A Python Dictionary which can be Key, Value pair
- A Ndarray
Note: Index by default is from 0, 1, 2, ...(n-1) where n is the length of data.
Create Series from List
Creating series with predefined index values.
Python3
# Numeric data
Data = [1, 3, 4, 5, 6, 2, 9]
# Creating series with default index values
s = pd.Series(Data)
# predefined index values
Index = ['a', 'b', 'c', 'd', 'e', 'f', 'g']
si = pd.Series(Data, Index)
Output:
Create Pandas Series from Dictionary
Program to Create Pandas series from Dictionary.
Python3
dictionary = {'a': 1, 'b': 2, 'c': 3, 'd': 4, 'e': 5}
# Creating series of Dictionary type
sd = pd.Series(dictionary)
Output:
Dictionary type dataConvert an Array to Pandas Series
Program to Create ndarray series.
Python3
# Defining 2darray
Data = [[2, 3, 4], [5, 6, 7]]
# Creating series of 2darray
snd = pd.Series(Data)
Output:
Data as NdarrayPandas DataFrames
The DataFrames in Pandas is a two-dimensional (2-D) data structure defined in pandas which consists of rows and columns.
Creating a Pandas DataFrame
Python3
# Program to Create DataFrame
# Import Library
import pandas as pd
# Create DataFrame with Data
a = pd.DataFrame(Data)
Here, Data can be:
- One or more dictionaries
- One or more Series
- 2D-numpy Ndarray
Create a Pandas DataFrame from multiple Dictionary
Program to Create a Dataframe with two dictionaries.
Python3
# Define Dictionary 1
dict1 = {'a': 1, 'b': 2, 'c': 3, 'd': 4}
# Define Dictionary 2
dict2 = {'a': 5, 'b': 6, 'c': 7, 'd': 8, 'e': 9}
# Define Data with dict1 and dict2
Data = {'first': dict1, 'second': dict2}
# Create DataFrame
df = pd.DataFrame(Data)
df
Output:
DataFrame with two dictionariesConvert list of dictionaries to a Pandas DataFrame
Here, we are taking three dictionaries and with the help of from_dict() we convert them into Pandas DataFrame.
Python3
import pandas as pd
data_c = [
{'A': 5, 'B': 0, 'C': 3, 'D': 3},
{'A': 7, 'B': 9, 'C': 3, 'D': 5},
{'A': 2, 'B': 4, 'C': 7, 'D': 6}]
pd.DataFrame.from_dict(data_c, orient='columns')
Output:
A B C D
0 5 0 3 3
1 7 9 3 5
2 2 4 7 6
Create DataFrame from Multiple Series
Program to create a dataframe of three Series.
Python3
import pandas as pd
# Define series 1
s1 = pd.Series([1, 3, 4, 5, 6, 2, 9])
# Define series 2
s2 = pd.Series([1.1, 3.5, 4.7, 5.8, 2.9, 9.3])
# Define series 3
s3 = pd.Series(['a', 'b', 'c', 'd', 'e'])
# Define Data
Data ={'first':s1, 'second':s2, 'third':s3}
# Create DataFrame
dfseries = pd.DataFrame(Data)
dfseries
Output:
DataFrame with three seriesConvert a Array to Pandas Dataframe
One constraint has to be maintained while creating a DataFrame of 2D arrays - The dimensions of the 2D array must be the same.
Python3
# Program to create DataFrame from 2D array
# Import Library
import pandas as pd
# Define 2d array 1
d1 =[[2, 3, 4], [5, 6, 7]]
# Define 2d array 2
d2 =[[2, 4, 8], [1, 3, 9]]
# Define Data
Data ={'first': d1, 'second': d2}
# Create DataFrame
df2d = pd.DataFrame(Data)
df2d
Output:
DataFrame with 2d ndarray
`;
$(commentSectionTemplate).insertBefore(".article--recommended");
}
loadComments();
});
});
function loadComments() {
if ($("iframe[id*='discuss-iframe']").length top_of_element && top_of_screen articleRecommendedTop && top_of_screen articleRecommendedBottom)) {
if (!isfollowingApiCall) {
isfollowingApiCall = true;
setTimeout(function(){
if (loginData && loginData.isLoggedIn) {
if (loginData.userName !== $('#followAuthor').val()) {
is_following();
} else {
$('.profileCard-profile-picture').css('background-color', '#E7E7E7');
}
} else {
$('.follow-btn').removeClass('hideIt');
}
}, 3000);
}
}
});
}
$(".accordion-header").click(function() {
var arrowIcon = $(this).find('.bottom-arrow-icon');
arrowIcon.toggleClass('rotate180');
});
});
window.isReportArticle = false;
function report_article(){
if (!loginData || !loginData.isLoggedIn) {
const loginModalButton = $('.login-modal-btn')
if (loginModalButton.length) {
loginModalButton.click();
}
return;
}
if(!window.isReportArticle){
//to add loader
$('.report-loader').addClass('spinner');
jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', {
PRACTICE_API_URL: practiceAPIURL,
PRACTICE_URL:practiceURL
},function(responseTxt, statusTxt, xhr){
if(statusTxt == "error"){
alert("Error: " + xhr.status + ": " + xhr.statusText);
}
});
}else{
window.scrollTo({ top: 0, behavior: 'smooth' });
$("#report_modal_content").show();
}
}
function closeShareModal() {
const shareOption = document.querySelector('[data-gfg-action="share-article"]');
shareOption.classList.remove("hover_share_menu");
let shareModal = document.querySelector(".hover__share-modal-container");
shareModal && shareModal.remove();
}
function openShareModal() {
closeShareModal(); // Remove existing modal if any
let shareModal = document.querySelector(".three_dot_dropdown_share");
shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" }));
document.querySelector(".hover__share-modal-container").append(
Object.assign(document.createElement('div'), { className: "share__modal" }),
);
document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" }));
const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"];
socialOptions.forEach((socialOption) => {
const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" });
const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` });
const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` });
const shareLink = (socialOption === "Copy Link") ?
Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) :
Object.assign(document.createElement('a'), { className: "link-container" });
if (socialOption === "LinkedIn") {
shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`);
shareLink.setAttribute('target', '_blank');
}
if (socialOption === "WhatsApp") {
shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`);
shareLink.setAttribute('target', "_blank");
}
if (socialOption === "Twitter") {
shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`);
shareLink.setAttribute('target', "_blank");
}
shareLink.append(icon, socialText);
socialContainer.append(shareLink);
document.querySelector(".share__modal").appendChild(socialContainer);
//adding copy url functionality
if(socialOption === "Copy Link") {
shareLink.addEventListener("click", function() {
var tempInput = document.createElement("input");
tempInput.value = window.location.href;
document.body.appendChild(tempInput);
tempInput.select();
tempInput.setSelectionRange(0, 99999); // For mobile devices
document.execCommand('copy');
document.body.removeChild(tempInput);
this.querySelector(".share__option-text").textContent = "Copied"
})
}
});
// document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu"));
}
function toggleLikeElementVisibility(selector, show) {
document.querySelector(`.${selector}`).style.display = show ? "block" : "none";
}
function closeKebabMenu(){
document.getElementById("myDropdown").classList.toggle("show");
}