Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Past warm intervals inform the future South Asian summer monsoon

Abstract

In the future, monsoon rainfall over densely populated South Asia is expected to increase, even as monsoon circulation weakens1,2,3. By contrast, past warm intervals were marked by both increased rainfall and a strengthening of monsoon circulation4,5,6, posing a challenge to understanding the response of the South Asian summer monsoon to warming. Here we show consistent South Asian summer monsoon changes in the mid-Pliocene, Last Interglacial, mid-Holocene and future scenarios, characterized by an overall increase in monsoon rainfall, a weakening of the monsoon trough-like circulation over the Bay of Bengal and a strengthening of the monsoon circulation over the northern Arabian Sea, as revealed by a compilation of proxy records and climate simulations. Increased monsoon rainfall is thermodynamically dominated by atmospheric moisture following the rich-get-richer paradigm, and dynamically dominated by the monsoon circulation driven by the enhanced land warming in subtropical western Eurasia and northern Africa. The coherent response of monsoon dynamics across warm climates reconciles past strengthening with future weakening, reinforcing confidence in future projections. Further prediction of South Asian summer monsoon circulation and rainfall by physics-based regression models using past information agrees well with climate model projections, with spatial correlation coefficients of approximately 0.8 and 0.7 under the high-emissions scenario. These findings underscore the promising potential of past analogues, bolstered by palaeoclimate reconstruction, in improving future South Asian summer monsoon projections.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Changes in the SASM during warm intervals.
Fig. 2: Thermodynamics and dynamics of South Asian summer rainfall changes during warm intervals.
Fig. 3: Surface warming during warm intervals and its effects on the SASM.
Fig. 4: Prediction of future changes in the SASM using past information.

Similar content being viewed by others

Data availability

The statistical operations and data visualization are based on Python 3.11.6, and the physical diagnostic analysis is based on NCL 6.6.2. All the maps are generated using PyNGL 1.6.1. The topographic elevation based on the Global 30 Arc-Second Elevation Data (GTOPO30) can be downloaded from https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/cam/topo/. The CMIP6 outputs used in this study are available from https://esgf-data.dkrz.de/search/cmip6-dkrz/. The observed SST data used in the atmospheric general circulation experiments are available from https://svn-ccsm-inputdata.cgd.ucar.edu/trunk/inputdata/atm/cam/sst/. The mid-Pliocene boundary conditions can be downloaded from https://geology.er.usgs.gov/egpsc/prism/7.2_pliomip2_data.html. The outputs of numerical model experiments and information on proxy records are available from https://doi.org/10.5281/zenodo.15001239 (ref. 109).

Code availability

The script for the adjustment of the palaeo-calendar effect (PaleoCalAdjust) is available from https://github.com/pjbartlein/PaleoCalAdjust. The CESM1.2 script can be downloaded from https://www2.cesm.ucar.edu/models/cesm1.2/. The scripts used to generate all figures and to perform moisture budget and moist static energy equation analyses are available from https://doi.org/10.5281/zenodo.15001239 (ref. 109).

References

  1. Turner, A. G. & Annamalai, H. Climate change and the South Asian summer monsoon. Nat. Clim. Change 2, 587–595 (2012).

    Article  ADS  Google Scholar 

  2. Fan, F., Mann, M. E., Lee, S. & Evans, J. L. Future changes in the South Asian summer monsoon: an analysis of the CMIP3 multimodel projections. J. Clim. 25, 3909–3928 (2012).

    Article  ADS  Google Scholar 

  3. Li, Z., Sun, Y., Li, T., Chen, W. & Ding, Y. Projections of south Asian summer monsoon under global warming from 1.5° to 5 °C. J. Clim. 34, 7913–7926 (2021).

    ADS  Google Scholar 

  4. Chen, K., Axelsson, J., Zhang, Q., Li, J. & Wang, L. EC-Earth simulations reveal enhanced inter-hemispheric thermal contrast during the last interglacial further intensified the Indian Monsoon. Geophys. Res. Lett. 49, e2021GL094551 (2022).

    Article  ADS  Google Scholar 

  5. Wang, Y., He, C., Li, T., Zhang, C. & Gu, X. Distinctive changes of Asian–African summer monsoon in interglacial epochs and global warming scenario. Clim. Dyn. 62, 2129–2145 (2023).

    Article  Google Scholar 

  6. Han, Z. & Li, G. The changes in south Asian summer monsoon circulation during the mid-Piacenzian warm period. Clim. Dyn. 62, 5845–5862 (2024).

    MathSciNet  Google Scholar 

  7. Wang, B. & LinHo Rainy season of the Asian-Pacific summer monsoon. J. Clim. 15, 386–398 (2002).

    Article  ADS  Google Scholar 

  8. Boos, W. R. & Kuang, Z. Dominant control of the South Asian monsoon by orographic insulation versus plateau heating. Nature 463, 218–222 (2010).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Wu, G. et al. Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 404 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  10. Chen, X. & Zhou, T. Distinct effects of global mean warming and regional sea surface warming pattern on projected uncertainty in the South Asian summer monsoon. Geophys. Res. Lett. 42, 9433–9439 (2015).

    Article  ADS  Google Scholar 

  11. Li, G., Xie, S. P., He, C. & Chen, Z. Western Pacific emergent constraint lowers projected increase in Indian summer monsoon rainfall. Nat. Clim. Change 7, 708–712 (2017).

    Article  ADS  Google Scholar 

  12. Huang, X. et al. South Asian summer monsoon projections constrained by the Interdecadal Pacific Oscillation. Sci. Adv. 6, eaay6546 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  13. Rajesh, P. V. & Goswami, B. N. A new emergent constraint corrected projections of Indian summer monsoon rainfall. Geophys. Res. Lett. 49, e2021GL096671 (2022).

    Article  ADS  Google Scholar 

  14. Chen, Z., Zhou, T. & Chen, X. Observationally constrained projection of Afro-Asian monsoon precipitation. Nat. Commun. 13, 2552 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Chen, Y. J., Hwang, Y. T. & Lu, J. Robust increase in South Asian monsoon rainfall under warming driven by extratropical clouds and ocean. npj Clim. Atmos. Sci. 7, 318 (2024).

  16. Cheng, Y., Wang, L., Chen, X., Zhou, T. & Turner, A. A shorter duration of the Indian summer monsoon in constrained projections. Geophys. Res. Lett. 52, e2024GL112848 (2025).

    Article  Google Scholar 

  17. Biasutti, M. et al. Global energetics and local physics as drivers of past, present and future monsoons. Nat. Geosci. 11, 392–400 (2018).

    Article  ADS  CAS  Google Scholar 

  18. Tierney, J. E. et al. Past climates inform our future. Science 370, 680 (2020).

    Article  Google Scholar 

  19. Clemens, S. C. et al. Remote and local drivers of pleistocene South Asian summer monsoon precipitation: a test for future predictions. Sci. Adv. 7, eabg3848 (2021).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  20. Feng, R. et al. Past terrestrial hydroclimate sensitivity controlled by Earth system feedbacks. Nat. Commun. 13, 1306 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  21. Wang, Y. V. et al. Higher sea surface temperature in the Indian Ocean during the Last Interglacial weakened the South Asian monsoon. Proc. Natl Acad. Sci. USA 119, e2107720119 (2022).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. He, J., Sun, W., Wang, B. & Liu, J. Opposing changes in Indian summer monsoon rainfall variability produced by orbital and anthropogenic forcing. Geophys. Res. Lett. 51, e2024GL109897 (2024).

    Article  Google Scholar 

  23. Dahiya, K., Chilukoti, N. & Attada, R. Evaluating the climatic state of Indian summer monsoon during the mid-Pliocene period using CMIP6 model simulations. Dyn. Atmos. Ocean. 106, 101455 (2024).

    Article  Google Scholar 

  24. Brierley, C. M. et al. Large-scale features and evaluation of the PMIP4–CMIP6 midHolocene simulations. Clim. Past 16, 1847–1872 (2020).

    Article  Google Scholar 

  25. Kaufman, D. S. & Broadman, E. Revisiting the Holocene global temperature conundrum. Nature 614, 425–435 (2023).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Haywood, A. M. et al. The Pliocene Model Intercomparison Project (PlioMIP) Phase 2: scientific objectives and experimental design. Clim. Past 12, 663–675 (2016).

    Article  Google Scholar 

  27. Otto-Bliesner, B. L. et al. The PMIP4 contribution to CMIP6—Part 2: Two interglacials, scientific objective and experimental design for Holocene and Last Interglacial simulations. Geosci. Model Dev. 10, 3979–4003 (2017).

    Article  ADS  CAS  Google Scholar 

  28. Kageyama, M. et al. The PMIP4 contribution to CMIP6—Part 1: Overview and over-arching analysis plan. Geosci. Model Dev. 11, 1033–1057 (2018).

    Article  ADS  Google Scholar 

  29. Li, X., Jiang, D., Tian, Z. & Yang, Y. Mid-Pliocene global land monsoon from PlioMIP1 simulations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 512, 56–70 (2018).

    Article  Google Scholar 

  30. D’Agostino, R., Bader, J., Bordoni, S., Ferreira, D. & Jungclaus, J. Northern Hemisphere monsoon response to mid-Holocene orbital forcing and greenhouse gas-induced global warming. Geophys. Res. Lett. 46, 1591–1601 (2019).

    Article  ADS  Google Scholar 

  31. Scussolini, P. et al. Agreement between reconstructed and modeled boreal precipitation of the last interglacial. Sci. Adv. 5, eaax7047 (2019).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  32. Wang, Y., Liu, X. & Herzschuh, U. Asynchronous evolution of the Indian and East Asian summer monsoon indicated by Holocene moisture patterns in monsoonal central Asia. Earth Sci. Rev. 103, 135–153 (2010).

    Article  ADS  Google Scholar 

  33. Meehl, G. A. & Arblaster, J. M. Mechanisms for projected future changes in South Asian monsoon precipitation. Clim. Dyn. 21, 659–675 (2003).

    Article  Google Scholar 

  34. Sabade, S. S., Kulkarni, A. & Kripalani, R. H. Projected changes in South Asian summer monsoon by multi-model global warming experiments. Theor. Appl. Climatol. 103, 543–565 (2011).

    Article  ADS  Google Scholar 

  35. Menon, A., Levermann, A., Schewe, J., Lehmann, J. & Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dyn. 4, 287–300 (2013).

    Article  ADS  Google Scholar 

  36. Ma, J. & Yu, J.-Y. Paradox in South Asian summermonsoon circulation change: lower tropospheric strengthening and upper tropospheric weakening. Geophys. Res. Lett. 41, 2934–2940 (2014).

    Article  ADS  Google Scholar 

  37. Li, X., Ting, M., Li, C. & Henderson, N. Mechanisms of Asian summer monsoon changes in response to anthropogenic forcing in CMIP5 models. J. Clim. 28, 4107–4125 (2015).

    Article  ADS  Google Scholar 

  38. Li, R., Lv, S., Han, B., Gao, Y. & Meng, X. Projections of South Asian summer monsoon precipitation based on 12 CMIP5 models. Int. J. Climatol. 37, 94–108 (2017).

    Article  Google Scholar 

  39. Sun, Y., Ding, Y. & Dai, A. Changing links between South Asian summer monsoon circulation and tropospheric land–sea thermal contrasts under a warming scenario. Geophys. Res. Lett. 37, L02704 (2010).

  40. Sooraj, K. P., Terray, P. & Mujumdar, M. Global warming and the weakening of the Asian summer monsoon circulation: assessments from the CMIP5 models. Clim. Dyn. 45, 233–252 (2015).

    Article  Google Scholar 

  41. Wu, Q. Y. et al. Asian summer monsoon responses to the change of land–sea thermodynamic contrast in a warming climate: CMIP6 projections. Adv. Clim. Change Res. 13, 205–217 (2022).

    Article  Google Scholar 

  42. Li, T. et al. Distinctive South and East Asian monsoon circulation responses to global warming. Sci. Bull. 67, 762–770 (2022).

    Article  Google Scholar 

  43. Luo, H., Wang, Z., He, C., Chen, D. & Yang, S. Future changes in South Asian summer monsoon circulation under global warming: role of the Tibetan Plateau heating. npj Clim. Atmos. Sci. 7, 103 (2024).

    Article  Google Scholar 

  44. Chou, C., Neelin, J. D., Chen, C. A. & Tu, J. Y. Evaluating the ‘rich-get-richer’ mechanism in tropical precipitation change under global warming. J. Clim. 22, 1982–2005 (2009).

    Article  ADS  Google Scholar 

  45. Seager, R., Naik, N. & Vecchi, G. A. Thermodynamic and dynamic mechanisms for large-scale changes in the hydrological cycle in response to global warming. J. Clim. 23, 4651–4668 (2010).

    Article  ADS  Google Scholar 

  46. Jin, Q. & Wang, C. A revival of Indian summer monsoon rainfall since 2002. Nat. Clim. Change 7, 587–594 (2017).

    Article  ADS  Google Scholar 

  47. Li, B. et al. Middle east warming in spring enhances summer rainfall over Pakistan. Nat. Commun. 14, 7635 (2023).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  48. Anoop, A., Prasad, S., Krishnan, R., Naumann, R. & Dulski, P. Intensified monsoon and spatiotemporal changes in precipitation patterns in the NW Himalaya during the early-mid Holocene. Quat. Int. 313–314, 74–84 (2013).

    Article  Google Scholar 

  49. Dortch, J. M. et al. Nature and timing of large landslides in the Himalaya and Transhimalaya of northern India. Quat. Sci. Rev. 28, 1037–1054 (2009).

    Article  ADS  Google Scholar 

  50. Gesch, D. B., Verdin, K. L. & Greenlee, S. K. New land surface digital elevation model covers the Earth. Eos 80, 69–70 (1999).

    Article  ADS  Google Scholar 

  51. deMenocal, P. B. African climate change and faunal evolution during the Pliocene–Pleistocene. Earth Planet. Sci. Lett. 220, 3–24 (2004).

    Article  ADS  CAS  Google Scholar 

  52. Chang, Z., Xiao, J., Lü, L. & Yao, H. Abrupt shifts in the Indian monsoon during the Pliocene marked by high-resolution terrestrial records from the Yuanmou Basin in southwest China. J. Asian Earth Sci. 37, 166–175 (2010).

    Article  ADS  Google Scholar 

  53. Yao, Y.-F. et al. Monsoon versus uplift in Southwestern China–Late Pliocene climate in Yuanmou Basin, Yunnan. PLoS ONE 7, e37760 (2012).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  54. Xie, S. et al. Palaeoclimatic estimates for the Late Pliocene based on leaf physiognomy from Western Yunnan, China. Turkish J. Earth Sci. 21, 251–261 (2012).

    Google Scholar 

  55. Gaur, R. & Chopra, S. R. K. Taphonomy, fauna, environment and ecology of Upper Sivaliks (Plio-Pleistocene) near Chandigarh, India. Nature 308, 353–355 (1984).

    Article  ADS  Google Scholar 

  56. Sanyal, P., Bhattacharya, S. K., Kumar, R., Ghosh, S. K. & Sangode, S. J. Mio–Pliocene monsoonal record from Himalayan foreland basin (Indian Siwalik) and its relation to vegetational change. Palaeogeogr. Palaeoclimatol. Palaeoecol. 205, 23–41 (2004).

    Article  Google Scholar 

  57. Burns, S. J., Fleitmann, D., Matter, A., Neff, U. & Mangini, A. Speleothem evidence from Oman for continental pluvial events during interglacial periods. Geology 29, 623–626 (2001).

    Article  ADS  CAS  Google Scholar 

  58. Cai, Y. et al. Variability of stalagmite-inferred Indian monsoon precipitation over the past 252,000 y. Proc. Natl Acad. Sci. USA 112, 2954–2959 (2015).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  59. Magiera, M. et al. Local and regional Indian summer monsoon precipitation dynamics during Termination II and the Last Interglacial. Geophys. Res. Lett. 46, 12454–12463 (2019).

    Article  ADS  Google Scholar 

  60. An, Z. et al. Glacial–interglacial Indian summer monsoon dynamics. Science 333, 719–723 (2011).

    Article  ADS  CAS  PubMed  Google Scholar 

  61. Jiang, N., Yan, Q. & Wang, H. General characteristics of climate change over China and associated dynamic mechanisms during the Last Interglacial based on PMIP4 simulations. Glob. Planet. Change 208, 103700 (2022).

    Article  Google Scholar 

  62. Kathayat, G. et al. Indian monsoon variability on millennial-orbital timescales. Sci. Rep. 6, 4–10 (2016).

    Article  Google Scholar 

  63. Cai, Y. et al. Large variations of oxygen isotopes in precipitation over south-central Tibet during Marine Isotope Stage 5. Geology 38, 243–246 (2010).

    Article  ADS  CAS  Google Scholar 

  64. Hodell, D. A. et al. Paleoclimate of Southwestern China for the past 50,000 yr inferred from lake sediment records. Quat. Res. 52, 369–380 (1999).

    Article  CAS  Google Scholar 

  65. Trivedi, A. in Holocene Climate Change and Environment (eds Kumaran, N. & Damodara, P.) 611–628 (Elsevier, 2022).

  66. Dixit, S. & Bera, S. K. Holocene climatic fluctuations from Lower Brahmaputra flood plain of Assam, northeast India. J. Earth Syst. Sci. 121, 135–147 (2012).

    Article  ADS  Google Scholar 

  67. Dixit, S. & Bera, S. K. Pollen-inferred vegetation vis-á-vis climate dynamics since Late Quaternary from western Assam, Northeast India: signal of global climatic events. Quat. Int. 286, 56–68 (2013).

    Article  Google Scholar 

  68. Ghosh, R. et al. Late Quaternary climate variability and vegetation response in Ziro Lake Basin, Eastern Himalaya: a multiproxy approach. Quat. Int. 325, 13–29 (2014).

    Article  Google Scholar 

  69. Singh, G., Wasson, R. J. & Agrawal, D. P. Vegetational and seasonal climatic changes since the last full glacial in the Thar Desert, northwestern India. Rev. Palaeobot. Palynol. 64, 351–358 (1990).

    Article  Google Scholar 

  70. Enzel, Y. et al. High-resolution holocene environmental changes in the Thar Desert, northwestern India. Science 284, 125–128 (1999).

    Article  ADS  CAS  PubMed  Google Scholar 

  71. Zhu, L. et al. A ~30,000-year record of environmental changes inferred from Lake Chen Co, Southern Tibet. J. Paleolimnol. 42, 343–358 (2009).

    Article  ADS  Google Scholar 

  72. Zhu, L. et al. Environmental changes since 8.4 ka reflected in the lacustrine core sediments from Nam Co, central Tibetan Plateau, China. The Holocene 18, 831–839 (2008).

    Article  ADS  Google Scholar 

  73. Phadtare, N. R. Sharp DEcrease in Summer Monsoon Strength 4000–3500 cal yr B.P. in the Central Higher Himalaya of India based on pollen evidence from alpine peat. Quat. Res. 53, 122–129 (2000).

    Article  Google Scholar 

  74. Morinaga, H. et al. Oxygen-18 and carbon-13 records for the last 14,000 years from lacustrine carbonates of Siling-Co (Lake) in the Qinghai-Tibetan Plateau. Geophys. Res. Lett. 20, 2909–2912 (1993).

    Article  ADS  CAS  Google Scholar 

  75. Demske, D., Tarasov, P. E., Wünnemann, B. & Riedel, F. Late glacial and Holocene vegetation, Indian monsoon and westerly circulation in the Trans-Himalaya recorded in the lacustrine pollen sequence from Tso Kar, Ladakh, NW India. Palaeogeogr. Palaeoclimatol. Palaeoecol. 279, 172–185 (2009).

    Article  Google Scholar 

  76. Danabasoglu, G. et al. The Community Earth System Model Version 2 (CESM2). J. Adv. Model. Earth Syst. 12, 1–35 (2020).

    Article  Google Scholar 

  77. Feng, R., Otto-Bliesner, B. L., Brady, E. C. & Rosenbloom, N. Increased climate response and earth system sensitivity from CCSM4 to CESM2 in Mid-Pliocene simulations. J. Adv. Model. Earth Syst. 12, e2019MS002033 (2020).

    Article  ADS  Google Scholar 

  78. Otto-Bliesner, B. L. et al. A comparison of the CMIP6 midHolocene and lig127k simulations in CESM2. Paleoceanogr. Paleoclimatol. 35, e2020PA003957 (2020).

  79. Döscher, R. et al. The EC-Earth3 Earth system model for the Coupled Model Intercomparison Project 6. Geosci. Model Dev. 15, 2973–3020 (2022).

    Article  ADS  Google Scholar 

  80. Zhang, Q. et al. Simulating the mid-Holocene, last interglacial and mid-Pliocene climate with EC-Earth3-LR. Geosci. Model Dev. 14, 1147–1169 (2021).

    Article  ADS  Google Scholar 

  81. Nazarenko, L. S. et al. Future climate change under SSP emission scenarios with GISS-E2.1. J. Adv. Model. Earth Syst. 14, 1–25 (2022).

    Article  Google Scholar 

  82. Kelley, M. et al. GISS‐E2.1: configurations and climatology. J. Adv. Model. Earth Syst. 12, e2019MS002025 (2020).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  83. Hewitt, H. T. et al. Design and implementation of the infrastructure of HadGEM3: the next-generation Met Office climate modelling system. Geosci. Model Dev. 4, 223–253 (2011).

    Article  ADS  Google Scholar 

  84. Williams, C. J. R. et al. Simulation of the mid-Pliocene Warm Period using HadGEM3: experimental design and results from model-model and model–data comparison. Clim. Past 17, 2139–2163 (2021).

    Article  Google Scholar 

  85. Williams, C. et al. The UK contribution to CMIP6/PMIP4: mid-Holocene and Last Interglacial experiments with HadGEM3, and comparison to the pre-industrial era and proxy data. Clim. Past 16, 1429–1450 (2020).

    Article  Google Scholar 

  86. Boucher, O. et al. Presentation and evaluation of the IPSL-CM6A-LR climate model. J. Adv. Model. Earth Syst. 12, 1–52 (2020).

    Article  Google Scholar 

  87. Guo, C. et al. Description and evaluation of NorESM1-F: a fast version of the Norwegian Earth System Model (NorESM). Geosci. Model Dev. 12, 343–362 (2019).

    Article  ADS  CAS  Google Scholar 

  88. Li, X., Guo, C., Zhang, Z., Helge Otterä, O. & Zhang, R. PlioMIP2 simulations with NorESM-L and NorESM1-F. Clim. Past 16, 183–197 (2020).

    Article  Google Scholar 

  89. Bartlein, P. J. & Shafer, S. L. Paleo calendar-effect adjustments in time-slice and transient climate-model simulations (PaleoCalAdjust v1.0): impact and strategies for data analysis. Geosci. Model Dev. 12, 3889–3913 (2019).

    Article  ADS  Google Scholar 

  90. He, L., Zhou, T. & Chen, X. South Asian summer rainfall from CMIP3 to CMIP6 models: biases and improvements. Clim. Dyn. 61, 1049–1061 (2022).

    Article  Google Scholar 

  91. Zhang, T., Jiang, X., Yang, S., Chen, J. & Li, Z. A predictable prospect of the South Asian summer monsoon. Nat. Commun. 13, 7080 (2022).

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  92. Seager, R. & Henderson, N. Diagnostic computation of moisture budgets in the ERA-interim reanalysis with reference to analysis of CMIP-archived atmospheric model data. J. Clim. 26, 7876–7901 (2013).

    Article  ADS  Google Scholar 

  93. Chou, C., Chen, C. A., Tan, P. H. & Chen, K. T. Mechanisms for global warming impacts on precipitation frequency and intensity. J. Clim. 25, 3291–3306 (2012).

    Article  ADS  Google Scholar 

  94. Huang, P., Xie, S., Hu, K., Huang, G. & Huang, R. Patterns of the seasonal response of tropical rainfall to global warming. Nat. Geosci. 6, 357–361 (2013).

    Article  ADS  CAS  Google Scholar 

  95. Huang, P. & Xie, S. P. Mechanisms of change in ENSO-induced tropical Pacific rainfall variability in a warming climate. Nat. Geosci. 8, 922–926 (2015).

    Article  ADS  CAS  Google Scholar 

  96. Neelin, J. D. & Held, I. M. Modeling tropical convergence based on the moist static energy budget. Mon. Weather Rev. 115, 3–12 (1987).

    Article  ADS  Google Scholar 

  97. Wu, B., Zhou, T. & Li, T. Atmospheric dynamic and thermodynamic processes driving the western North Pacific anomalous anticyclone during El Niño. Part I: Maintenance mechanisms. J. Clim. 30, 9621–9635 (2017).

    Article  ADS  Google Scholar 

  98. Hall, A., Cox, P., Huntingford, C. & Klein, S. Progressing emergent constraints on future climate change. Nat. Clim. Change 9, 269–278 (2019).

    Article  ADS  Google Scholar 

  99. Brient, F. Reducing uncertainties in climate projections with emergent constraints: concepts, examples and prospects. Adv. Atmos. Sci. 37, 1–15 (2020).

    Article  Google Scholar 

  100. Gent, P. R. et al. The Community Climate System Model version 4. J. Clim. 24, 4973–4991 (2011).

    Article  ADS  Google Scholar 

  101. Wang, B., Bao, Q., Hoskins, B., Wu, G. & Liu, Y. Tibetan Plateau warming and precipitation changes in East Asia. Geophys. Res. Lett. 35, 1–5 (2008).

    Article  Google Scholar 

  102. Khodri, M. et al. Tropical explosive volcanic eruptions can trigger El Ninõ by cooling tropical Africa. Nat. Commun. 8, 778 (2017).

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  103. O’Neill, B. C. et al. The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016).

    Article  ADS  Google Scholar 

  104. He, J., Soden, B. J. & Kirtman, B. The robustness of the atmospheric circulation and precipitation response to future anthropogenic surface warming. Geophys. Res. Lett. 41, 2614–2622 (2014).

    Article  ADS  Google Scholar 

  105. He, J. & Soden, B. J. Anthropogenic weakening of the tropical circulation: the relative roles of direct CO2 forcing and sea surface temperature change. J. Clim. 28, 8728–8742 (2015).

    Article  ADS  Google Scholar 

  106. Shaw, T. A. & Voigt, A. Tug of war on summertime circulation between radiative forcing and sea surface warming. Nat. Geosci. 8, 560–566 (2015).

    Article  ADS  CAS  Google Scholar 

  107. Li, X. & Ting, M. Understanding the Asian summer monsoon response to greenhouse warming: the relative roles of direct radiative forcing and sea surface temperature change. Clim. Dyn. 49, 2863–2880 (2017).

    Article  Google Scholar 

  108. Watanabe, M. & Kimoto, M. Atmosphere–ocean thermal coupling in the North Atlantic: a positive feedback. Q. J. R. Meteorol. Soc. 126, 3343–3369 (2000).

    ADS  Google Scholar 

  109. He, L., Zhou, T. & Guo, Z. Data and code for “Past warm intervals inform the future South Asian summer monsoon”. Zenodo https://doi.org/10.5281/zenodo.15001239 (2025).

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China Excellent Research Group for Tibetan Plateau Earth System (continuation grant) and the Second Tibetan Plateau Scientific Expedition and Research (STEP) programme (grant number 2019QZKK0102). L.H. also acknowledges support from NSF AGS 23-17159. The atmospheric general circulation model experiments were performed at the Earth System Numerical Simulation Facility (EarthLab) supported by the National Large Scientific and Technological Infrastructure project. We acknowledge the climate modelling groups that produced and provided the model simulations used in this study.

Author information

Authors and Affiliations

Authors

Contributions

T.Z. conceived of and designed the study, with support from L.H. L.H. conducted the analysis and drafted the paper. T.Z. provided comments and revised the paper. L.H. and Z.G. performed the atmospheric general circulation model experiments. L.H. performed the linear baroclinic model experiment. All the authors contributed to the scientific interpretation of the results.

Corresponding author

Correspondence to Tianjun Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature thanks Chris Brierley, Francesco Pausata and the other, anonymous, reviewer(s) for their contribution to the peer review of this work. Peer reviewer reports are available.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data figures and tables

Extended Data Fig. 1 Moisture budget over South Asian during warm intervals.

a–d, Individual terms (unit, mm d−1) of the column-integrated moisture budget (see Methods; from left to right are changes in rainfall, evaporation, zonal moisture advection, meridional moisture advection, vertical moisture transport and residual term) in the mid-Pliocene (a), Last Interglacial (b), mid-Holocene (c), and SSP5-8.5 scenario (d) relative to the pre-industrial period, derived from CMIP6 simulations. Bars denote the multi-model ensemble mean and markers denote the individual model results.

Extended Data Fig. 2 Scatterplots of atmospheric variables related to thermodynamics and dynamics over South Asia during warm intervals.

a–f, Scatterplots of global mean surface temperature (unit, K) versus South Asian specific humidity at 850 hPa (a; unit, g kg−1), South Asian specific humidity versus the thermodynamic term (b; unit, mm d−1), meridional surface temperature contrast (unit, K) versus South Asian monsoon trough index (c; unit, m s−1), South Asian monsoon trough index versus the dynamic term (d; unit, mm d−1), meridional surface temperature contrast versus northern Arabian Sea monsoon index (e; unit, m s−1), northern Arabian Sea monsoon index versus the dynamic term (f), derived from CMIP6 simulations. The solid lines denote the linear regression obtained by the least squares method, and dashed curves indicate the 99% confidence range of the linear regression. The Pearson correlation coefficients (r) and p values are shown in the lower corner of each panel. These indexes are defined in the Methods.

Extended Data Fig. 3 West African monsoon during warm intervals and its effects on South Asian summer monsoon.

a–d, Multi-model means of summer rainfall (shading; unit, mm d−1) and horizontal winds at 850hPa (vectors; unit, m s−1) in the mid-Pliocene (a), Last Interglacial (b), mid-Holocene (c), and SSP5-8.5 (d) relative to the pre-industrial period, derived from CMIP6 simulations. The changes in rainfall and horizontal winds for which at least five out of six models and four out of five models have the same sign are shown, respectively. e,f, Spatial pattern of the idealized heating (shading; unit, K d−1) over northern tropical Africa at 0.45 sigma level (e) and response of horizontal wind (vector; unit, m s−1) at 850 hPa (f), derived from the linear baroclinic model experiment (see Methods; Extended Data Table 2). Only vector anomalies passing the 90% confidence level of the t-test are shown. The box indicates target regions for easterly anomalies. Blue lines represent the 2,000 m elevation contour based on the Global 30 Arc-Second Elevation Data50. The maps were generated using PyNGL.

Extended Data Fig. 4 Role of zonal winds in the dynamics of South Asian summer monsoon during warm intervals.

a–d, Multi-model means of climatological air temperature in the pre-industrial period (shading; unit, K) and changes in zonal winds (vector; unit, m s−1) at 850 hPa. e–h, Column-integrated sensible heat energy by zonal winds changes (see Methods; unit, W m−2). i–l, Changes in vertical velocity at 500 hPa (multiplied by −1; unit, 10−2 Pa s−1). The shading denotes changes in the mid-Pliocene (a,e,i), Last Interglacial (b,f,j), mid-Holocene (c,g,k), and SSP5-8.5 scenario (d,h,l) relative to the pre-industrial period, derived from CMIP6 simulations. Dashed contours represent the zero value. The changes for which at least four out of five models have the same sign are shown. Black lines represent the 2,000 m elevation contour based on the Global 30 Arc-Second Elevation Data50. The maps were generated using PyNGL.

Extended Data Fig. 5 Response of surface temperature and South Asian summer monsoon to different forcing agents.

a,c,e,g, Response of summer surface temperature (shading; unit, K) to the mid-Pliocene surface type (a), Last Interglacial orbital parameters (c), SSP5-8.5 atmospheric CO2 (e), and SSP5-8.5 SST (g), derived from the atmospheric model experiments based on CAM5 (see Methods; Extended Data Table 2). b,d,f,h, The same as in a,c,e and g, respectively, but for the summer precipitation (shading; unit, mm d−1) and horizontal winds at 850 hPa (vectors; unit, m s−1). Only anomalies passing the 90% confidence level of the t-test are shown. Blue boxes in the right panel denote the subregions for assessing the spatially non-uniform monsoon response. Blue lines represent the 2,000 m elevation contour based on the Global 30 Arc-Second Elevation Data50. The maps were generated using PyNGL.

Extended Data Fig. 6 Changes in surface temperature and South Asian monsoon rainfall under SSP2-4.5 and SSP3-7.0 scenarios.

a,c,d,e, Multi-model means of summer surface temperature (a; unit, K), rainfall (c; unit, mm d−1), thermodynamic term (d), and dynamic term (e) in the SSP2-4.5 relative to the pre-industrial period. b,f,g,h, The same as in a,c,d and e, respectively, but for changes in the SSP3-7.0 relative to the pre-industrial period, derived from CMIP6 simulations. Dashed contours represent the zero value. The changes for which at least four out of five models have the same sign are shown. Blue boxes indicate the target regions of the study (see Methods). Blue lines represent the 2,000 m elevation contour based on the Global 30 Arc-Second Elevation Data50. The maps were generated using PyNGL.

Extended Data Table 1 Details of CMIP6 warm interval simulations used in the study
Extended Data Table 2 Details of the atmospheric model experiments based on CAM5

Supplementary information

Supplementary Table 1

Information on the proxy records over South Asia used in the study, including the period, location, interpretation, proxy type and references.

Peer Review File

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, L., Zhou, T. & Guo, Z. Past warm intervals inform the future South Asian summer monsoon. Nature 641, 653–659 (2025). https://doi.org/10.1038/s41586-025-08956-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41586-025-08956-6

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing