Skip to main content
CNS Drug Reviews logoLink to CNS Drug Reviews
. 2006 Jun 7;11(2):195–212. doi: 10.1111/j.1527-3458.2005.tb00270.x

Bremazocine: A κ‐Opioid Agonist with Potent Analgesic and Other Pharmacologic Properties

Juanita Dortch‐Carnes 1,, David E Potter 2
PMCID: PMC6741727  PMID: 16007240

ABSTRACT

Bremazocine is a κ‐opioid receptor agonist with potent analgesic and diuretic activities. As an analgesic it is three‐ to four‐times more potent than morphine, as determined in both hot plate and tail flick tests. Bremazocine and other benzomorphan analogs were synthesized in an effort to produce opiates with greater κ‐opioid receptor selectivity and with minimal morphine‐like side effects. Unlike morphine bremazocine is devoid of physical and psychological dependence liability in animal models and produces little or no respiratory depression. While bremazocine does not produce the characteristic euphoria associated with morphine and its abuse, it has been shown to induce dysphoria, a property that limits its clinical usefulness. Similarly to morphine, repeated administration of bremazocine leads to tolerance to its analgesic effect. It has been demonstrated that the marked diuretic effect of bremazocine is mediated primarily by the central nervous system.

Because of its psychotomimetic side effects (disturbance in the perception of space and time, abnormal visual experience, disturbance in body image perception, de‐personalization, de‐realization and loss of self control) bremazocine has limited potential as a clinical analgesic. However, its possible utility for the therapy of alcohol and drug addiction warrants further consideration because of its ability to decrease ethanol and cocaine self‐administration in non‐human primates. In addition, the ability of bremazocine‐like drugs to lower intraocular pressure and to minimize ischemic damage in animal models suggests their possible use in the therapy of glaucoma and cardiovascular disease.

Keywords: Analgesia, Bremazocine, Diuresis, Dysphoria, κ‐Opioid agonists, Ocular hypotension, Respiration

Full Text

The Full Text of this article is available as a PDF (127.8 KB).

REFERENCES

  • 1. Aitchison KA, Baxter GF, Awan MM, Smith M, Yellon DM, Opie LH. Opposing effects on infarction of δ‐and k‐opioid receptor activation in the isolated rat heart: Implications for ischemic preconditioning. Basic Res Cardiol 2000;95:1–10. [DOI] [PubMed] [Google Scholar]
  • 2. Amarante LH, Duarte ID. The k‐opioid agonist (+/−)‐bremazocine elicits peripheral antinociception by activation of the L‐arginine/nitric oxide/cyclic GMP pathway. Eur J Pharmacol 2002;454(1):19–23. [DOI] [PubMed] [Google Scholar]
  • 3. Archer S, Glick SD, Bidlack J. Cyclazocine revisited. Neurochem Res 1996;21:1369–1373. [DOI] [PubMed] [Google Scholar]
  • 4. Aziz LA, Forsling ML, Woolf CJ. The effect of intracerebroventricular injections of morphine on vasopressin release in the rat. J Physiol 1981;311:401–409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 5. Banna NR, Al‐Amen HA, Jabbur SJ. Selective inhibition of nociceptive flexion reflex discharge by the k agonist bremazocine. Neuropharmacology 1987;26(2/3):271–274. [DOI] [PubMed] [Google Scholar]
  • 6. Bartok RE, Craft RM. Sex differences in opioid antinociception. J Pharmacol Exp Ther 1997;282(2):769–778. [PubMed] [Google Scholar]
  • 7. Bellissant E, Denolle T, Sinnassamy P, et al. Systemic and regional hemodynamic and biological effects of a new k‐opioid agonist, niravoline, in healthy volunteers. J Pharmacol Exp Ther 1996;278:232–242. [PubMed] [Google Scholar]
  • 8. Binder W, Machelska H, Mousa S, et al. Analgesic and anti‐inflammatory effects of two novel k‐opioid peptides. Anesthesiology 2001;94(6):1034–1044. [DOI] [PubMed] [Google Scholar]
  • 9. Bolme P, Fuxe K, Agnati LF, Bradley R, Smythies J. Cardiovascular effects of morphine and opioid peptides following intracisternal administration in chloralose‐anesthetized rats. Eur J Pharmacol 1978;48(3):319–324. [DOI] [PubMed] [Google Scholar]
  • 10. Bradford HF, Crowder JM, White EJ. Inhibitory actions of opioid compounds on calcium fluxes and neurotransmitter release from mammalian cerebral cortical slices. Br J Pharmacol 1986;88(1):87–93. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 11. Brooks DP, Giardina G, Gellai M, et al. Opiate receptors within the blood‐brain barrier mediate k‐agonist‐induced water diuresis. J Pharmacol Exp Ther 1993;266:164–171. [PubMed] [Google Scholar]
  • 12. Bruni JF, van Vugt D, Marshall S, Meites J. Effects of naloxone, morphine and methionine enkephalin on serum prolactin, luteinizing hormone, follicle stimulating hormone, thyroid stimulating hormone and growth hormone. Life Sci 1977;21(3):461–466. [DOI] [PubMed] [Google Scholar]
  • 13. Butelman ER, Baron SP, Woods JH. Ethanol effects in pigeons trained to discriminate MK‐801, PCP or CGS‐19755. Behav Pharmacol 1993;4(1):57–60. [PubMed] [Google Scholar]
  • 14. Butelman ER, Negus SS, Ai Y, de Costa BR, Woods JH. k‐Opioid antagonist effects of systemically administered nor‐binaltorphimine in a thermal antinociception assay in rhesus monkeys. J Pharmacol Exp Ther 1993;267(3):1269–1276. [PubMed] [Google Scholar]
  • 15. Carey GJ, Bergman J. Enadoline discrimination in squirrel monkeys: Effects of opioid agonists and antagonists. J Pharmacol Exp Ther 2001;297(1):215–223. [PubMed] [Google Scholar]
  • 16. Chavkin C, James IF, Goldstein A. Dynorphin is a specific endogenous ligand of the k‐opioid receptor. Science 1982;215:413–415. [DOI] [PubMed] [Google Scholar]
  • 17. Chen TY, Goyagi T, Toung TJ, et al. Prolonged opportunity for ischemic neuroprotection with selective k‐opioid agonists in rats. Stroke 2004;35(5):1180–1185. [DOI] [PubMed] [Google Scholar]
  • 18. Cicero TJ, Meyer ER, Bell RD, Koch GA. Effects of morphine and methadone on serum testosterone and luteinizing hormone levels and on the secondary sex organs of the male rat. Endocrinology 1976;98(2):367–372. [DOI] [PubMed] [Google Scholar]
  • 19. Clark JA, Liu L, Price M, Hersh B, Edelson M, Pasternack GW. k‐Opiate receptor multiplicity: Evidence for two U50,488‐sensitive k1 subtypes and a novel k3 subtype. J Pharmacol Exp Ther 1989;251:461–468. [PubMed] [Google Scholar]
  • 20. Collins SL, Kunko PM, Ladenheim B, Cadet JL, Carroll FI, Izenwasser S. Chronic cocaine increases k‐opioid receptor density: Lack of effect by selective dopamine uptake inhibitors. Synapse 2002;45(3):153–158. [DOI] [PubMed] [Google Scholar]
  • 21. Corbett AD, Kosterlitz HW. Bremazocine is an agonist at k‐opioid receptors and an antagonist at μ‐opioid receptors in the guinea‐pig myenteric plexus. Br J Pharmacol 1986;89(1):245–249. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 22. Cosgrove KP, Carroll ME. Effects of bremazocine on self‐administration of smoked cocaine base and orally delivered ethanol, phencyclidine, saccharin, and food in rhesus monkeys: A behavioral economic analysis. J Pharmacol Exp Ther 2002;301:993–1002. [DOI] [PubMed] [Google Scholar]
  • 23. Di Chiara, G , Imperato A. Opposite effects of μ‐ and k‐opiate agonists on dopamine release in the nucleus accumbens and in the dorsal caudate of freely moving rats. J Pharmacol Exp Ther 1988;244(3):1067–1080. [PubMed] [Google Scholar]
  • 24. Dixon AK, Hill RC, Roemer D, Scholtysik G. Pharmacological properties of 4(1‐methyl‐4‐piperidylidine)‐9,10 dihydro‐4H‐benzo‐[4,5]cyclohepta[1,2]‐thiophene hydrogen maleate (pizotifen). Arzneimittelforschung 1977;27(10):1968–1979. [PubMed] [Google Scholar]
  • 25. Domino EF, Chodoff P, Corssen G. Pharmacologic effects of CI‐581, a new dissociative anesthetic, in man. Clin Pharmacol Ther 1965;40:279–291. [DOI] [PubMed] [Google Scholar]
  • 26. Dortch‐Carnes J, Potter DE. Effect of bremazocine, a k‐opioid receptor agonist, on inositol phosphate formation in isolated iris‐ciliary bodies. Pharmacology 2002;66:100–106. [DOI] [PubMed] [Google Scholar]
  • 27. Drago F, Gorgone G, Spina F, et al. Opiate receptors in the rabbit iris. Naunyn Schmiedeberg's Arch Pharmacol 1980;315:1–4. [DOI] [PubMed] [Google Scholar]
  • 28. Drago F, Panissidi G, Bellomio F, Dal Bello, A , Aguglia E, Gorgone G. Effects of opiates and opioids on intraocular pressure of rabbits and humans. Clin Exp Pharmacol Physiol 1985;12:107–113. [DOI] [PubMed] [Google Scholar]
  • 29. Duke MA, Meier TL, Bolanos CA, Crawford CA, McDougall SA. Paradoxical effects of k‐opioid stimulation on the locomotor activity and Fos immunoreactivity of the preweanling rat: role of dopamine receptors. Behav Neurosci 1997;111(5):1114–1122. [DOI] [PubMed] [Google Scholar]
  • 30. Dunwiddie TV, Johnson KJ, Proctor WR. Bremazocine differentially antagonizes responses to selective μ‐ and δ‐opioid receptor agonists in rat hippocampus. Br J Pharmacol 1987;91:523–530. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 31. Dykstra LA, Gmerek DE, Winger G, Woods JH. k‐Opioids in rhesus monkeys. II. Analysis of the antagonistic actions of quadazocine and β‐funaltrexamine. J Pharmacol Exp Ther 1987;242:421–427. [PubMed] [Google Scholar]
  • 32. El‐Sharkawy TY, Al‐Shireida MF, Pilcher CW. Vascular effects of some opioid receptor agonists. Can J Physiol Pharmacol 1991;69:846–851. [DOI] [PubMed] [Google Scholar]
  • 33. Ensinger H, Hedler L, Schurr C, Starke K. Ethylketocyclazocine decreases noradrenaline release and blood pressure in the rabbit at a peripheral opioid receptor. Naunyn Schmiedeberg's Arch Pharmacol 1984;328:20–23. [DOI] [PubMed] [Google Scholar]
  • 34. Ensinger H, Hedler L, Szabo B, Starke K. Bremazocine causes sympatho‐inhibition and hypotension in rabbits by activation peripheral k‐receptors. J Cardiovasc Pharmacol 1986;8:470–475. [DOI] [PubMed] [Google Scholar]
  • 35. Evans CJ, Keith DE, Morrison H, Magendzo K, Edwards RH. Cloning of a δ‐opioid receptor by functional expression. Science 1992;258:1952–1955. [DOI] [PubMed] [Google Scholar]
  • 36. Fanciullacci M, Boccuni M, Pietrini U, Sicuteri F. Search for opiate receptors in human pupil. Int J Clin Pharmacol Res 1980;1:109–113. [Google Scholar]
  • 37. Feldberg W, Wei E. The central origin and mechanism of cardiovascular effects of morphine as revealed by naloxone in cats. J Physiol 1977;272(1):99P–100P. [PubMed] [Google Scholar]
  • 38. Freye E, Harting E, Schenk GK. An opiate that induces sedation and analgesia without respiratory depression. Anesth Analg 1983;62:483–488. [PubMed] [Google Scholar]
  • 39. Furst S. Pharmacological interaction of opiates with various classes of centrally acting dopaminergic drugs. Drug Metab Drug Interact 1991;9(2):77–102. [DOI] [PubMed] [Google Scholar]
  • 40. Gilbeau PM, Hosobuchi Y, Lee NM. Dynorphin effects on plasma concentrations of anterior pituitary hormones in the nonhuman primate. J Pharmacol Exp Ther 1986;238:974–977. [PubMed] [Google Scholar]
  • 41. Gilbert PE, Martin WR. The effects of morphine and nalorphine‐like drugs in the nondependent morphine‐dependent and cyclazocine‐dependent chronic spinal dog. J Pharmacol Exp Ther 1976;198:66–82. [PubMed] [Google Scholar]
  • 42. Gillan MGC, Kosterlitz HW, Magnan J. Unexpected antagonism in the rat vas deferens by benzomorphans which are agonists in other pharmacological tests. Br J Pharmacol 1981;72:13–15. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 43. Greiner E, Folk JE, Jacobson AE, Rice KC. A novel and facile preparation of bremazocine enantiomers through optically pure N‐norbremazocines. Bioorg Med Chem 2004;12:233–238. [DOI] [PubMed] [Google Scholar]
  • 44. Haertzen CA. Subjective effects of narcotic antagonists cyclazocine and nalorphine on the addiction research center inventory (ARCI). Psychopharmacologia 1970;18(4):366–377. [DOI] [PubMed] [Google Scholar]
  • 45. Hanner M, Moebius FF, Flandorfer A, et al. Purification, molecular cloning, and expression of the mammalian sigma1‐binding site. Proc Natl Acad Sci USA 1996;93(15):8072–8077. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 46. Harris JA, Chang PC, Drake CT. k‐Opioid receptors in rat spinal cord: Sex‐linked distribution differences. Neuroscience 2004;124(4):879–890. [DOI] [PubMed] [Google Scholar]
  • 47. Hayes A, Kelly A. Profile of activity of k‐receptor agonists in the rabbit vas deferens. Eur J Pharmacol 1985;110(3):317–322. [DOI] [PubMed] [Google Scholar]
  • 48. Hayes AG, Tyers MB. Determination of receptors that mediate opiate side effects in the mouse. Br J Pharmacol 1983;79:731–736. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 49. Heijna MH, Hogenboom F, Portochese PS, Mulder AH, Schoffelmeer AN. μ‐ and δ‐opioid receptor‐mediated inhibition of adenylate cyclase activity stimulated by release of endogenous dopamine in rat neostriatal slices: Demonstration of potent δ‐agonist activity of bremazocine. J Pharmacol Exp Ther 1989;249(2):864–868. [PubMed] [Google Scholar]
  • 50. Helmstetter FJ, Calcagnetti DJ, Cramer CP, Fanselow MS. Ethylketocyclazocine and bremazocine analgesia in neonatal rats. Pharmacol Biochem Behav 1988;30(4):817–821. [DOI] [PubMed] [Google Scholar]
  • 51. Hertz, A. Endogenous opioid systems and alcohol addiction. Psychopharmacologia 1997;129:99–111. [DOI] [PubMed] [Google Scholar]
  • 52. Horan PJ, de Costa BR, Rice KC, Porreca F. Differential antagonism of U69,593‐ and bremazocine‐induced antinociception by(‐)‐UPHIT: Evidence of k‐opioid receptor multiplicity in mice. J Pharmacol Exp Ther 1991;257:1154–1161. [PubMed] [Google Scholar]
  • 53. Horan P, Taylor J, Yamamura HI, Porreca F. Extremely long‐lasting antagonistic actions of nor‐binaltorphimine (nor‐BNI) in the mouse tail‐flick test. J Pharmacol Exp Ther 1992;260(3):1237–1243. [PubMed] [Google Scholar]
  • 54. Huges NR, McKnight AT, Woodruff GN, Hill MP, Crossman AR, Brotchie JM. k‐Opioid receptor agonists increase locomotor activity in the monoamine‐depleted rat model of parkinsonism. Mov Disord 1998;13:228–233. [DOI] [PubMed] [Google Scholar]
  • 55. Huidobro‐Toro JP, Parada S. Pharmacological evidence for and endogenous role of k‐opiate receptor in fluid and electrolyte balance. Eur J Pharmacol 1984;107:1–9. [DOI] [PubMed] [Google Scholar]
  • 56. Hutchinson M, Kosterlitz HW, Leslie FM, Waterfield AA. Assessment in the guinea‐pig ileum and mouse vas deferens of benzomorphans which have strong antinociceptive activity but do not substitute for morphine in the dependent monkey. Br J Pharmacol 1975;55(4):541–546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 57. Jackson A, Cooper SJ. Observational analysis of the effects of k‐opioid agonists on open field behavior in the rat. Psychopharmacologia 1988;94:248–253. [DOI] [PubMed] [Google Scholar]
  • 58. Jaffe JH, Martin WR. Opioid analgesics and antagonists In: Gilman AG, Goodman LS, Gilman A, Eds. The pharmacological basis of therapeutics. New York : Macmillan, 1980. ;494–534. [Google Scholar]
  • 59. James IF, Goldstein A. Site‐directed alkylation of multiple opioid receptors. I. Binding selectivity. Mol Pharmacol 1984;25:337–342. [PubMed] [Google Scholar]
  • 60. Kapusta DR, Obih JC. Central k‐opioid receptor‐evoked changes in renal function in conscious rats: Participation of renal nerves. J Pharmacol Exp Ther 1993;267:197–204. [PubMed] [Google Scholar]
  • 61. Keats AS. The effects of drugs on respiration in man. Annu Rev Pharmacol Toxicol 1985;25:41–65. [DOI] [PubMed] [Google Scholar]
  • 62. Ko MC, Butelman ER, Woods JH. Activation of peripheral k‐opioid receptors inhibits capsaicin‐induced thermal nociception in rhesus monkeys. J Pharmacol Exp Ther 1999;289(1):378–385. [PMC free article] [PubMed] [Google Scholar]
  • 63. Ko MC, Johnson MD, Butelman ER, Willmont KJ, Mosberg HI, Woods JH. Intracisternal nor‐binaltorphimine distinguishes central and peripheral k‐opioid antinociception in rhesus monkeys. J Pharmacol Exp Ther 1999;291(3):1113–1120. [PMC free article] [PubMed] [Google Scholar]
  • 64. Kramer HJ, Uhl W, Ladstetter B, Becker A. Influence of asimadoline, a new k‐opioid receptor agonist, on tubular water absorption and vasopressin secretion in man. Br J Clin Pharmacol 2000;50:227–235. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 65. Kumor KM, Haertzen CA, Johnson RE, Kocher T, Jasinski D. Human psychopharmacology of ketocyclazocine as compared with cyclazocine, morphine and placebo. J Pharmacol Exp Ther 1986;238(3):960–968. [PubMed] [Google Scholar]
  • 66. Kuzman A, Sandin J, Terenius L, Ogren S. Dose‐ and time‐dependent bimodal effects of k‐opioid agonists on locomotor activity in mice. J Pharmacol Exp Ther 2000;295:1031–1042. [PubMed] [Google Scholar]
  • 67. Laubie M, Schmitt H, Vincent M, Remond G. Central cardiovascular effects of morphinomimetic peptides in dogs. Eur J Pharmacol 1977;46(1):67–71. [DOI] [PubMed] [Google Scholar]
  • 68. Leander JD. A k‐opioid effect: Increased urination in the rat. J Pharmacol Exp Ther 1983;224:89–94. [PubMed] [Google Scholar]
  • 69. Leander JD. Further study of k‐opioids on increased urination. J Pharmacol Exp Ther 1983;227:35–41. [PubMed] [Google Scholar]
  • 70. Lokensgard JR, Gekker G, Peterson PK. k‐Opioid receptor agonist inhibition of HIV‐1 envelope glycoprotein‐mediated membrane fusion and CXCR4 expression on CD4(+) lymphocytes. Biochem Pharmacol 2002;63(6):1037–1041. [DOI] [PubMed] [Google Scholar]
  • 71. Lord JAH, Waterfield AA, Hughes J, Kosterlitz HW. Endogenous opioid peptides, multiple agonists and receptors. Nature (Lond) 1977;267:495–497. [DOI] [PubMed] [Google Scholar]
  • 72. Magnan J, Paterson SJ, Tavani A, Kosterlitz HW. The binding spectrum of narcotic analgesic drugs with different agonist and antagonist properties. Naunyn Schmiedeberg's Arch Pharmacol 1982;319:197–205. [DOI] [PubMed] [Google Scholar]
  • 73. Mansour A, Fox CA, Akil H, Watson SJ. Opioid‐receptor mRNA expression in the rat CNS: Anatomical and functional implications. Trends Neurosci 1995;18:22–29. [DOI] [PubMed] [Google Scholar]
  • 74. Marko M, Romer D. Inhibitory effect of a new opioid agonist on reproductive endocrine activity in rats of both sexes. Life Sci 1983;33:233–240. [DOI] [PubMed] [Google Scholar]
  • 75. Martin WR, Eades CG, Thompson JA, Huppler RE, Gilbert PE. The effects of morphine‐and nalorphine‐like drugs in the nondependent and morphine‐dependent chronic spinal dog. J Pharmacol Exp Ther 1976;197:517–532. [PubMed] [Google Scholar]
  • 76. McKnight AT, Corbett AD, Marcolo M, Kosterlitz HW. The opioid receptors in the hamster vas deferens are of the δ‐type. Neuropharmacology 1985;24:1011–1017. [DOI] [PubMed] [Google Scholar]
  • 77. McKnight AT, Paterson SJ, Corbett AD, Kosterlitz HW. Acute and persistent effects of beta‐funaltrexamine on the binding and agonist potencies of opioids in the myenteric plexus of the guinea‐pig ileum. Neuropeptides 1984;5(1–3):169–172. [DOI] [PubMed] [Google Scholar]
  • 78. Mello NK, Negus SS. Effects of k‐opioid agonists on cocaine‐ and food‐maintained responding by rhesus monkeys. J Pharmacol Exp Ther 1998;286:812–824. [PubMed] [Google Scholar]
  • 79. Merz H, Stockhaus K, Wick H. Stereoisomeric 5,9‐dimethyl‐2'‐hydroxy‐2‐tetrahydrofurfuryl‐6,7‐benzomorphans, strong analgesics with non‐morphine‐like action profiles. J Med Chem 1975;18(10):996–1000. [DOI] [PubMed] [Google Scholar]
  • 80. Merz H, Stockhaus K. N‐[(Tetrahydrofuryl)alkyl] and N‐(alkoxyalkyl) derivatives of (‐)‐ normetazocine, compoumds with differentiated opioid action profiles. J Med Chem 1979;22(12):1475–1483. [DOI] [PubMed] [Google Scholar]
  • 81. Mori T, Nomura M, Nagase H, Narita M, Suzuki T. Effects of a newly synthesized k‐opioid receptor agonist, TRK‐820, on the discriminative stimulus and rewarding effects of cocaine in rats. Psychopharmacology (Berl) 2002;161(1):17–22. [DOI] [PubMed] [Google Scholar]
  • 82. Negus SS, Picker MJ, Dykstra LA. Interactions between the discriminative stimulus effects of μ‐ and k‐opioid agonists in the squirrel monkey. J Pharmacol Exp Ther 1991;256(1):149–158. [PubMed] [Google Scholar]
  • 83. Nestby P, Schoffelmeer ANM, Homberg JR, et al. Bremazocine reduces unrestricted free‐choice ethanol self‐administration in rats without affecting sucrose preference. Psychopharmacologia 1999;142:309–317. [DOI] [PubMed] [Google Scholar]
  • 84. Oiso Y, Iwasaki Y, Kondo K, Takatsuki K, Tomita A. Effect of the opioid k‐receptor agonist U50488H on the secretion of arginine vasopressin: Study on the mechanism of U50488H‐induced diuresis. Neuroendo crinology 1988;48:658–662. [DOI] [PubMed] [Google Scholar]
  • 85. Pang CN, Zimmermann E, Sawyer CH. Morphine inhibition of the preovulatory surges of plasma luteinizing hormone and follicle stimulating hormone in the rat. Endocrinology 1977;101(6):1726–1732. [DOI] [PubMed] [Google Scholar]
  • 86. Paul D, Pick CG, Tive LA, Pasternak GW. Pharmacological characterization of nalorphine a k3 analgesic. J Pharmacol Exp Ther 1991;257:1–7. [PubMed] [Google Scholar]
  • 87. Pazos A, Tristan C, Florez J. A comparative study of the respiratory depressant and analgesic effects of bremazocine, a k‐agonist. Life Sci 1983;33:579–581. [DOI] [PubMed] [Google Scholar]
  • 88. Petrillo P, Gambino, MC Tavani, A. Bremazocine induces antinociception, but prevents opioid‐induced constipation and catatonia in rats and precipitates withdrawal in morphine‐dependent rats. Life Sci 1984;35:917–927. [DOI] [PubMed] [Google Scholar]
  • 89. Pfeiffer A, Braun, S Mann, K , Meyer HD, Brantl V. Anterior pituitary responses to a k‐opioid agonist in man. J Clin Endocrinol Metab 1986;62:181–185. [DOI] [PubMed] [Google Scholar]
  • 90. Pfeiffer A, Pasi A, Mehraien P, Herz A. Opiate receptor binding sites in human brain. Brain Res 1982;248:87–96. [DOI] [PubMed] [Google Scholar]
  • 91. Picker MJ, Dykstra LA. Discriminative stimulus effects of μ‐ and k‐opioids in the pigeon: Analysis of the effects of full and partial μ‐ and k‐agonists. J Pharmacol Exp Ther 1989;249(2):557–566. [PubMed] [Google Scholar]
  • 92. Picker MJ, Doty P, Stevens S, Mattox SR, Dykstra LA. Discriminative stimulus properties of U50488 and morphine: Effects of training dose on stimulus substitution patterns produced by μ‐ and k‐opioid agonists. J Pharmacol Exp Ther 1990;254(1):13–22. [PubMed] [Google Scholar]
  • 93. Potter DE, Russell KRM, Manhiani M. Bremazocine increases C‐type natriuretic peptide levels in aqueous humor and enhances outflow facility. J Pharmacol Exp Ther 2004;309:548–553. [DOI] [PubMed] [Google Scholar]
  • 94. Powell KR, Holtzman SG. Differential antagonism of the rate‐decreasing effects of k‐opioid receptor agonists by naltrexone and norbinaltorphimine. Eur J Pharmacol 1999;377:21–28. [DOI] [PubMed] [Google Scholar]
  • 95. Pugsley MK. The diverse molecular mechanisms responsible for the actions of opioids on the cardiovascular system. Pharmacol Ther 2002;93(1):51–75. [DOI] [PubMed] [Google Scholar]
  • 96. Pugsley MK. The opioid receptor independent actions of k‐receptor agonists in the cardiovascular system. Curr Pharm Des 2004;10(20):2429–2444. [DOI] [PubMed] [Google Scholar]
  • 97. Quirion R, Bowen WD, Itzhak Y, et al. A proposal for the classification of σ‐binding sites. Trends Pharmacol Sci 1992;13:85–86. [DOI] [PubMed] [Google Scholar]
  • 98. Richards ML, Sadee E. In vivo binding of benzomorphans to μ‐, δ‐, and k‐opioid receptors: Comparison with urine output in the rat. J Pharmacol Exp Ther 1985;233:425–432. [PubMed] [Google Scholar]
  • 99. Romer D, Buscher H, Hill R, et al. Bremazocine: A potent, long‐acting opiate k‐agonist. Life Sci 1980;27:971–978. [DOI] [PubMed] [Google Scholar]
  • 100. Rusovici DE, Negus SS, Mello NK, Bidlack JM. k‐Opioid receptors are differentially labeled by arylacetamides and benzomorphans. Eur J Pharmacol 2004;485(1–3):119–1125. [DOI] [PubMed] [Google Scholar]
  • 101. Russell KRM, Potter DE. Biphasic alterations of cAMP levels and inhibition of norepinephrine release in iris‐ciliary body by bremazocine. J Pharmacol Exp Ther 2001;298:941–946. [PubMed] [Google Scholar]
  • 102. Russell KRM, Wang DR, Potter DE. Modulation of ocular hydrodynamics and iris function by bremazocine, a k‐opioid receptor agonist. Exp Eye Res 2000;70:675–682. [DOI] [PubMed] [Google Scholar]
  • 103. Salas SP, Roblero J, Ureta H, Huidobro‐Toro JP. Diuretic effect of bremazocine, a k‐opioid with central and peripheral sites of action. J Pharmacol Exp Ther 1989;250(3):992–999. [PubMed] [Google Scholar]
  • 104. Schaz K, Stock G, Simon W, et al. Enkephalin effects on blood pressure, heart rate, and baroreceptor reflex. Hypertension 1980;2(4):395–407. [DOI] [PubMed] [Google Scholar]
  • 105. Schnur P, Walker JM. Effects of U50488H on locomotor activity in the hamster. Pharmacol Biochem Behav 1990;36:813–816. [DOI] [PubMed] [Google Scholar]
  • 106. Shearman, GT , Herz A. Discriminative stimulus properties of bremazocine in the rat. Neuropharmacology 1981;20(12A):1209–1213. [DOI] [PubMed] [Google Scholar]
  • 107. Simonin F, Gaveriaux‐Ruff C, Befort K, et al. k‐Opioid receptor in humans: cDNA and genomic cloning, chromosomal assignment, functional expression, pharmacology, and expression pattern in the central nervous system. Proc Natl Acad Sci USA 1995;92(15):7006–7010. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 108. Sim‐Selley LJ, Daunais JB, Porrino LJ, Childers SR. μ and k1 opioid‐stimulated, [35S]guanylyl‐5'‐O‐(γ‐thio)‐triphosphate binding in cynomolgus monkey brain. Neuroscience 1999;94:651–662. [DOI] [PubMed] [Google Scholar]
  • 109. Slizgi GR, Ludens JH. Studies on the nature and mechanism of the diuretic activity of the opioid analgesic ethylketocyclazocine. J Pharmacol Exp Ther 1982;220:585–591. [PubMed] [Google Scholar]
  • 110. Stevens CW. Opioid research in amphibians: An alternative pain model yielding insights on the evolution of opioid receptors. Brain Res Rev 2004;46(2):204–215. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 111. Tegeder I, Geisslinger G. Opioids as modulators of cell death and survival‐unraveling mechanisms and revealing new indications. Pharmacol Rev 2004;56(3):351–369. [DOI] [PubMed] [Google Scholar]
  • 112. Tepper P, Woods JH. Changes in locomotor activity and naloxone‐induced jumping in mice produced by WIN 35 197‐2 (ethylketazocine) and morphine. Psychopharmacology (Berl) 1978;58:125–129. [DOI] [PubMed] [Google Scholar]
  • 113. Tiberi M, Magnan J. Pharmacological characterization of the binding of, [3H]bremazocine in guinea‐pig brain: Evidence for multiplicity of the k‐opioid receptors. Can J Physiol Pharmacol 1989;67:1336–1344. [DOI] [PubMed] [Google Scholar]
  • 114. Upton N, Sewell RDE, Spencer PSJ. Differentiation of potent μ‐ and k‐opiate agonists using heat and pressure antinociceptive profiles and combined potency analysis. Eur J Pharmacol 1982;78(4):421–429. [DOI] [PubMed] [Google Scholar]
  • 115. Upton N, Sewell RD, Spencer PS. Analgesic actions of μ‐ and k‐opiate agonists in rats. Arch Int Pharmacodyn Ther 1983;262(2):199–207. [PubMed] [Google Scholar]
  • 116. Ur E, Wright DM, Bouloux MG, Grossman A. The effects of spiradoline (U62066E), a k‐opioid receptor agonist, on neuronendocrine function in man. Br J Pharmacol 1997;120:781–784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 117. von Voightlander, PF , Lahti RA, Ludens JH. U‐50,488H: A selective and structurally novel non‐μ, k‐opioid agonist. J Pharmacol Exp Ther 1983;224(1):7–12. [PubMed] [Google Scholar]
  • 118. Walker JS. Anti‐inflammatory effects of opioids. Adv Exp Med Biol 2003;521:148–160. [PubMed] [Google Scholar]
  • 119. Walsh SL, Strain EC, Abreu ME, Bigelow GE. Pharmacodynamic profile of enadoline, a selective k‐agonist, in humans. 60th Annual Meeting of College on Problems of Drug Dependence. June 13–18, 1998. Scottsdale , AZ . [Google Scholar]
  • 120. Weinreb RN, Khaw PT. Primary open‐angle glaucoma. Lancet 2004;363:1711–1720. [DOI] [PubMed] [Google Scholar]
  • 121. Yamada T, Nakao K, Itoh H, et al. Effects of naloxone on vasopressin secretion in conscious rats: Evidence for inhibitory role of endogenous opioid peptides in vasopressin secretion. Endocrinology 1989;125(2):785–790. [DOI] [PubMed] [Google Scholar]
  • 122. Yasuda K, Raynor K, Kong H, et al. Cloning and functional comparison of k and δ opioid receptors from mouse brain. Proc Natl Acad Sci USA 1993;90:6736–6740. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 123. Yuan L, Neufeld AH. Tumor necrosis factor: A potentially neurodestructive cytokine produced by glia in the human glaucomatous optic nerve head. Glia 2000;32:42–50. [PubMed] [Google Scholar]
  • 124. Yukimura T, Stock G, Stumpf H, Unger T, Ganten D. Effects of, [D‐Ala2]‐methionine‐enkephalin on blood pressure, heart rate, and baroreceptor reflex sensitivity in conscious cats. Hypertension 1981;3(5):528–533. [DOI] [PubMed] [Google Scholar]
  • 125. Zernig G, Burke T, Lewis JW, Woods JH. Mechanism of clocinnamox blockade of opioid receptors: Evidence from in vitro and ex vivo binding and behavioral assay. J Pharmacol Exp Ther 1996;279(1):23–31. [PubMed] [Google Scholar]
  • 126. Zhou J‐J, Pei J‐M, Wang G‐Y, et al. Inducible HSP70 mediates delayed cardioprotection via U‐50488H pretreatment in rat ventricular myocytes. Am J Physiol Heart Circ Physiol 2001;281:H40–H47. [DOI] [PubMed] [Google Scholar]
  • 127. Zukin RS, Eghbali M, Olive D, Unterwald EM, Tempel A. Characterization and visualization of rat and guinea pig brain k‐opioid receptors: Evidence for k1 and k2 opioid receptors. Proc Natl Acad Sci USA 1988;85:4061–4065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  • 128. Zukin RS, Zukin SR. Demonstration of, [3H]cyclazocine binding to multiple opiate receptor sites. Mol Pharmacol 1981;20(2):246–254. [PubMed] [Google Scholar]

Articles from CNS Drug Reviews are provided here courtesy of Wiley

RESOURCES