Aller au contenu

Mètre

Un article de Wikipédia, l'encyclopédie libre.

Mètre
Sceau du Bureau international des poids et mesures.
Sceau du Bureau international des poids et mesures.
Informations
Système Unités de base du Système international
Unité de… Longueur
Symbole m
Conversions
1 m en… est égal à…
  Unités US   ≈3,280 84 pieds (1 ft = 30,48 cm)
     ≈39,370 1 pouces (1 po = 2,54 cm)

Le mètre, de symbole m (sans point abréviatif), est l'unité de longueur du Système international (SI). C'est l'une de ses sept unités de base, à partir desquelles sont construites les unités dérivées (les unités SI de toutes les autres grandeurs physiques).

Première unité de mesure du système métrique initial, le mètre (du grec μέτρον / métron, « mesure »[1]) a d'abord été défini par l'Assemblée nationale française comme la 10 000 000e partie d'une moitié de méridien terrestre[a], puis comme la longueur d'un mètre étalon international, puis comme un multiple d'une certaine longueur d'onde et enfin, depuis 1983, comme « la longueur du trajet parcouru par la lumière dans le vide pendant une durée d'un 299 792 458e de seconde »[2].

Avec la Révolution française de 1789 s'affirme le désir d'unifier les mesures et de s'affranchir de l'héritage de la féodalité. Le mètre est adopté et sa définition affinée comme étant la dix-millionième partie de la méridienne passant par Paris et reliant le pôle Nord à l'Équateur. Cette distance correspond à la détermination de la longueur du quart de méridien terrestre par Delambre et Méchain. Un mètre étalon, le mètre des Archives, est produit et conservé à Paris.

Lois et décrets révolutionnaires

[modifier | modifier le code]

Le , l'Académie royale des sciences adopte le rapport d'une commission composée de Condorcet, Borda, Laplace et Monge et qui préconise de choisir, comme base du nouveau système universel de poids et mesures, la dix-millionième partie du quadrant du méridien terrestre passant par Paris[3]. Le , l'Assemblée nationale, sur la demande de Talleyrand et au vu du rapport de l'Académie des sciences[4], avait voté l'exécution de la mesure d'un arc de méridien de Dunkerque à Barcelone pour donner une base objective à la nouvelle unité de mesure.

Le mètre en marbre de la rue de Vaugirard à Paris (1796).

Delambre et Méchain sont chargés de la mesure précise de l'arc de méridien de Dunkerque à Barcelone[5]. La triangulation s'opère de à fin , avec 115 triangles[5] et deux bases : celle de Melun[5],[N 1] et celle de Perpignan[5],[N 2]. Les angles sont mesurés avec la méthode du cercle répétiteur de Borda[6].

Les opérations ne sont pas encore achevées qu'en , un premier mètre provisoire doit être adopté. Fondé sur les calculs du méridien par Nicolas-Louis de Lacaille en 1758 et d'une longueur de 3 pieds 11 lignes 44 centièmes, soit 443,44 lignes de la toise de Paris[7], ce mètre provisoire est proposé en par Borda, Lagrange, Condorcet et Laplace[8] et adopté par décret le par la Convention[9].

Avec la loi du 18 germinal an III ()[10], la Convention institue le système métrique décimal et poursuit les mesures du méridien terrestre qui avaient été interrompues fin 1793 par le Comité de Salut public.

Le 4 messidor an VII (), le prototype du mètre définitif, en platine[11], conforme aux nouveaux calculs du méridien, est présenté au Conseil des Cinq-Cents et au Conseil des Anciens par une délégation[N 3] puis est déposé aux Archives nationales[12].

La loi du 19 frimaire an VIII ()[13] édictée au début du Consulat, institue le mètre définitif.

Le mètre provisoire fixé dans les lois du et du 18 germinal an III est révoqué. Il est remplacé par le mètre définitif, dont la longueur fixée par les mesures du méridien par Delambre et Méchain est de 3 pieds 11 lignes 296 millièmes[14].

Les mètres dématérialisés

[modifier | modifier le code]

En 1960, la 11e Conférence générale des poids et mesures (CGPM)[15] abroge la définition du mètre en vigueur depuis 1889, fondée sur le prototype international en platine iridié. Elle définit le mètre, unité de longueur du Système international (SI), comme égal à 1 650 763,73 longueurs d'onde dans le vide de la radiation correspondant à la transition entre les niveaux 2p10 et 5d5 de l'atome de krypton 86.

En 1983, la définition du mètre fondée sur l'atome de krypton 86 en vigueur depuis 1960 est abrogée. Le mètre, unité de longueur du SI, est défini par la 17e CGPM[16] comme étant la longueur du trajet parcouru dans le vide par la lumière pendant une durée de 1/299 792 458e de seconde.

À compter du , la définition du mètre adoptée à la 26e réunion de la CGPM[17] de est : « Le mètre, symbole m, est l'unité de longueur du SI. Il est défini en prenant la valeur numérique fixée de la vitesse de la lumière dans le vide, c, égale à 299 792 458 lorsqu'elle est exprimée en m s−1, la seconde étant définie en fonction de ΔνCs. » Dans cette définition, ΔνCs est la fréquence de la transition hyperfine de l’état fondamental de l’atome de césium 133 non perturbé égale à 9 192 631 770 Hz.

Les mesures de l'arc de méridien sous l'Ancien Régime

[modifier | modifier le code]

En 1667 sous Louis XIV, l’Académie des Sciences conçoit l’idée d’un méridien de départ des longitudes qui passerait au centre des bâtiments du futur observatoire. L'Observatoire royal est situé en dehors de Paris pour faciliter les observations astronomiques. Les académiciens fixent son orientation nord–sud et établissent son axe de symétrie par observation du passage du Soleil pour devenir le méridien de référence pour la France. Pour mesurer une partie du méridien, la méthode utilisée depuis la Renaissance est celle de la triangulation. Au lieu de mesurer des milliers de kilomètres, on mesure les angles d’une suite de triangles adjacents. La longueur d’un seul côté d’un seul triangle, que les arpenteurs appellent « base », permet de connaître toutes les longueurs de tous les triangles. Des opérations géométriques permettent ensuite de déterminer la longueur du méridien[18].

En 1669, Jean Picard mesure le premier le rayon terrestre par triangulation. L’arc de méridien de 1° 11  57 , choisi entre Sourdon et Malvoisine, mesure 68,430 toises de Paris soit 135 km. Rapportée à un degré, cette mesure permet d’établir la longueur d’un méridien par l’abbé Picard pour qui « cette mesure, prise 360 fois donnerait la circonférence entière d’un méridien terrestre ». Dans son mémoire du à Colbert sur la cartographie de la France, Picard propose une mesure sur toute la France de la méridienne de l'Observatoire. Cette mesure devait servir à la fois à mesurer plus exactement la circonférence de la Terre qu'à en établir une plus juste de la France[19]. Au lieu de cartographier les provinces et assembler ensuite les différentes cartes, Picard propose un châssis général de triangulation de la France qu'on remplirait ensuite avec des cartes plus détaillées. Pour construire ce châssis, Picard propose de reprendre la voie du méridien qu'il avait commencé à mesurer et de mesurer l'axe Dunkerque-Perpignan passant par Paris. Picard meurt l'année suivante, fin 1682.

Jean-Dominique Cassini reprend le projet en 1683 et se lance dans les mesures de la méridienne entre Dunkerque et Collioure. Mais Colbert meurt en et Louvois, qui lui succède, arrête les travaux de mesure de Cassini. Il meurt à son tour en 1691. Cassini reprend ses travaux en 1700-1701 sans pouvoir les achever. Son fils Jacques Cassini (Cassini II), effectuera cette mesure entre 1713 et 1718. La mesure de l'arc porte sur une distance cinq fois plus longue que celle effectuée par l’abbé Picard, elle est plus précise.

Dans ses Principia de 1687, Newton affirme que la Terre est aplatie aux pôles de 1/230. En 1690, à cause de sa conception différente de la gravité, Huygens trouve un aplatissement de 1/578 seulement, plus faible que celui de Newton[20]. Pour vérifier ces théories, l'Académie des Sciences de Paris envoie, sur ordre du roi, deux expéditions géodésiques, l'une au Pérou en 1735-1744 avec La Condamine, Bouguer, Godin et Jussieu[21], et l'autre en Laponie en 1736-1737 avec Maupertuis, Celsius, et Clairaut. La mesure de longueurs d'arcs de méridien à des latitudes différentes doit permettre de déterminer la forme de la Terre. Les mesures de Maupertuis donnent un aplatissement de 1/178, proche de la valeur donnée par Newton et validant, un demi-siècle après la loi de la gravitation, le système newtonien de l'attraction universelle[22].

En 1739, César-François Cassini de Thury (Cassini III) et Nicolas-Louis de Lacaille effectuent une nouvelle mesure du méridien de Paris[23] permettant la mise à jour des cartes de France et d'Europe. C'est cette mesure d'arc qui sera provisoirement retenue en 1795 par la Convention pour la définition du mètre, la dix-millionième partie du quart du méridien terrestre[24]. En 1784, Cassini de Thury établit par triangulation, une carte précise de la France, prélude à la jonction des observatoires de Greenwich et Paris[25],[26].

Les mesures de la Méridienne de Paris par Delambre et Méchain

[modifier | modifier le code]

Le , un projet de décret inspiré par Lagrange, Borda, Laplace, Monge et Condorcet est proposé par Talleyrand. Celui-ci prévoit la mesure d'un arc de méridien de Dunkerque à Barcelone. Six commissaires doivent être nommés à l'Académie des Sciences pour mener à bien le projet. L'Assemblée adopte ce principe de la grandeur du quart du méridien terrestre comme base du nouveau système de mesures qui sera décimal. Elle mandate la mesure d'un arc de méridien depuis Dunkerque jusqu'à Barcelone.

Cercle répétiteur de Borda, utilisé pour la mesure de la méridienne.

En commence la fabrication des cercles répétiteurs de Borda et Lenoir. À la fin du mois de , les deux commissaires Jean-Baptiste Joseph Delambre et Pierre Méchain et leurs opérateurs commencent la mesure du méridien. Elle est divisée en deux zones avec une jonction à Rodez : la partie Nord, de Dunkerque à Rodez était mesurée par Delambre et la partie sud, en remontant de Barcelone à Rodez, par Méchain. Pour les mesures de longueurs des bases des triangles, Delambre et Méchain utilisent les règles de Borda mises au point par Étienne Lenoir. En laiton et en platine, elles sont ajustées sur une toise et mesurent 12 pieds (environ 4 m). Pour mesurer les angles, c'est le cercle répétiteur mis au point par Borda et Étienne Lenoir en 1784 qui est utilisé. On mesure la longueur d’un côté du triangle reposant sur un terrain plat, puis on établit par visées les mesures des angles du triangle pour obtenir par des calculs trigonométriques la longueur de tous les côtés du triangle et par projection la distance réelle. La détermination des positions (longitude et latitude) des extrémités du segment de méridien est faite par une mesure astronomique[27]. Le , un rapport de l'Académie des sciences à la Convention nationale donne l'état des travaux en cours[28].

À cause des conditions politiques, le travail de mesure du méridien sera retardé et exécuté en deux temps de 1792 à 1793 et de 1795 à 1798. En , le Comité de Salut Public souhaitant en effet « donner le plus tôt possible l'usage des nouvelles mesures à tous les citoyens en profitant de l'impulsion révolutionnaire », la Convention nationale avait émis un décret instaurant un mètre fondé sur les anciens résultats des mesures de La Condamine en 1735 au Pérou, Maupertuis en 1736 en Laponie et Cassini en 1740 de Dunkerque à Perpignan.

Les opérations de mesure du méridien de Delambre et Méchain sont suspendues fin 1793 par le Comité de Salut public. Celui-ci ne voulant donner de fonctions qu'à des hommes « dignes de confiance par leurs vertus républicaines et leur haine du roi », le (3 nivôse an 2), Borda, Lavoisier, Laplace et Delambre sont exclus de la Commission des poids et mesures[29]. Condorcet, secrétaire de l'Académie Royale des sciences et instigateur du nouveau système de mesure, est arrêté et meurt en prison le . Lavoisier est guillotiné le . Mais, à la faveur de la loi du 18 germinal an III () portée par Prieur de la Côte d'Or, Delambre et Méchain seront à nouveau nommés commissaires chargés des mesures de la méridienne et les travaux pourront reprendre et s'achèveront en 1798[30].

Le résultat des mesures de Delambre et Méchain est précis : 551 584,7 toises, avec une erreur remarquable de seulement 8 millionièmes. La longueur du quart de méridien calculée est alors égal à 5 130 740 toises et le mètre égal à 443,295 936 lignes. La commission spéciale pour le quart du méridien et la longueur du mètre rédige son rapport le 6 floréal an 7 ()[31]. Le 4 messidor, l'Institut présente au corps législatif les étalons du mètre et du kilogramme en platine qui sont déposés aux Archives en exécution de l'article II de la loi du 18 germinal an 3 ().

Avec la loi du 19 frimaire an 8 () édictée sous le Consulat, la longueur du mètre provisoire ordonnée dans les lois du et du 18 germinal an III (3 pieds 11 lignes 44 centièmes) est remplacée par la longueur définitive fixée par les mesures du méridien par Delambre et Méchain. Elle est désormais de 3 pieds 11 lignes 296 millièmes. Le mètre en platine déposé le 4 Messidor précédent au Corps législatif par l’Institut national des Sciences et des Arts est confirmé et devient l'étalon de mesure définitif des mesures de longueur dans toute la République.

Les organismes internationaux

[modifier | modifier le code]
La devise « Conserver la mesure » figurant sur le sceau souligne le rôle de l'organisation dans la préservation des prototypes internationaux. Elle énonçe les principes de neutralité, d'équité et d'impartialité, qui sous-tendent encore aujourd'hui les principes du BIPM[32].

Après que la seconde Conférence générale de l'Association géodésique internationale se soit prononcée pour la création d'un bureau international européen des poids et mesures[33], Napoléon III crée par décret en 1869 une Commission internationale du mètre qui deviendra la Conférence générale des poids et mesure (CGPM) et lance des invitations aux pays étrangers. Vingt-quatre pays répondent favorablement. Cette Commission sera en effet convoquée en 1870 ; mais, forcée par la guerre franco-allemande de suspendre ses séances, elle ne pourra les reprendre utilement qu'en 1872[24],[34].

Le , dix-sept états signent à Paris la Convention du Mètre dans le but d'établir une autorité mondiale dans le domaine de la métrologie[32].

Dans ce but, trois structures sont créées. La Convention délègue ainsi à la Conférence générale des poids et mesures (CGPM), au Comité international des poids et mesures (CIPM) et au Bureau international des poids et mesures (BIPM) l'autorité pour agir dans le domaine de la métrologie, en assurant une harmonisation des définitions des différentes unités des grandeurs physiques. Ces travaux mènent à la création en 1960 du Système international d’unités (SI)[35].

La Convention est modifiée en 1921[35]. En 2016, elle regroupait 58 États membres et 41 États associés à la conférence générale, comprenant la majorité des pays industrialisés.

Le Comité international des poids et mesures (CIPM) est composé de dix-huit personnes, chacune issue d'un État membre différent de la Convention. Sa fonction est de promouvoir l'usage d'unités de mesure uniformes et de soumettre des projets de résolution allant en ce sens à la CGPM. Pour ce faire, elle s'appuie sur les travaux de comités consultatifs[35].

La Conférence générale des poids et mesures (CGPM) est formée de délégués des États membres de la convention et se réunit tous les quatre ans en moyenne pour réviser les définitions des unités de base du Système international d’unités (SI) dont le mètre[35].

Le Bureau international des poids et mesures (BIPM), basé au Pavillon de Breteuil à Sèvres non loin de Paris, a pour mission, sous la surveillance du CIPM, d'assurer l'unification mondiale des mesures[35].

De nos jours, la réalisation pratique du mètre est possible en tous lieux, grâce aux horloges atomiques embarquées dans les satellites GPS[36]. Le prix Nobel de physique décerné au cinquième directeur du BIPM marque la fin d’une époque durant laquelle la métrologie devient une discipline autonome dotée des moyens nécessaires pour dématérialiser la définition du mètre grâce aux avancées technologiques de la physique quantique[37],[32].

Conversions et repères

[modifier | modifier le code]

Relation avec d'autres unités de mesure

[modifier | modifier le code]

Il existe une relation entre l'unité de mesure (mètre), l'unité de masse (kilogramme), les unités de surface (mètre carré) et les unités de volume (mètre cube et litre, souvent utilisés pour désigner des volumes ou des quantités de liquides) :

  • un mètre carré (m2) est, par exemple, la surface d'un carré dont chaque côté mesure un mètre ;
  • un mètre cube (m3) est, par exemple, le volume d'un cube dont chaque arête mesure un mètre ;
  • à l'origine, le kilogramme fut défini comme la masse d'un décimètre cube (dm3) d'eau pure, avant d'être remplacé par un étalon en platine d’un kilogramme (voir : Historique du kilogramme).

Dans certains métiers (archives, terrassement, de construction, etc.), on parle de « mètre linéaire » (noté : « ml »). Il s'agit en apparence d'un pléonasme, puisque le mètre désigne précisément une longueur de ligne et que la norme NF X 02-003[38] précise qu'on ne doit pas affecter les noms d'unités de qualificatifs qui devraient se rapporter à la grandeur correspondante. Par ailleurs, le symbole ml, mℓ ou mL correspond dans le SI à millilitre, ce qui n'a rien à voir avec une longueur et est une source de confusion. Toutefois, dans ces métiers, l'adjectif « linéaire » est explicité pour signaler la longueur dans une direction utile, c'est-à-dire sans tenir compte des autres dimensions (largeur, hauteur, épaisseur, profondeur, etc.), neutralisées ou réputées connues ; servant à convertir des valeurs linéaires en nombre d'unités (d'une longueur fixe et connue). Par exemple, nombre de tubes, de rouleaux, de baguettes, de profilés, etc. Il permet aussi de préciser que mètre se réfère à une longueur et pas à une surface (voire à un volume) lorsque, dans le jargon de certains métiers, la répétition fait tomber le mot carrés. (Pour les volumes, l'abréviation de mètre cube est généralement cube. Voir Cubage du bois.)

On emploie usuellement pour les gaz le normo mètre cube (noté Nm3), anciennement « mètre cube normal » (noté m3(n)), qui correspond au volume mesuré en mètres cubes dans des conditions normales de température et de pression. Cette unité n'est pas reconnue par le BIPM. Sa définition varie selon les pays et selon les professions qui l'utilisent.

En fait, et de façon générale, « le symbole de l’unité ne doit pas être utilisé pour fournir des informations spécifiques sur la grandeur en question et il ne doit jamais être la seule source d’information sur la grandeur. Les unités ne doivent jamais servir à fournir des informations complémentaires sur la nature de la grandeur ; ce type d’information doit être attaché au symbole de la grandeur et non à celui de l’unité[39]. » (ici le volume). On doit donc dire « volume mesuré en mètres cubes dans les conditions normales de température et de pression », abrégé en « volume normal en mètres cubes ». Tout comme : Ueff = 500 V et non U = 500 Veff (« tension efficace exprimée en volts » et non « volts efficaces »).

Correspondance avec d'autres unités de longueur

[modifier | modifier le code]

Le mètre correspond à :

  • 5,399 568 × 10−4 milles marins ;
  • 6,215 04 × 10−4 miles terrestres ;
  • 1,056 97 × 10−16 années-lumière ;
  • environ 1,093 6 yard (par définition le yard est égal à 0,914 4 m) ;
  • environ 3,281 pieds (par définition le pied est égal à 30,48 cm) ;
  • environ 39,37 pouces (par définition le pouce est égal à 2,54 cm).

Quelques points de repères

[modifier | modifier le code]
  • La taille d'un pied humain est d'environ 0,30 m.
  • On parcourt environ 5 000 m en une heure de marche rapide.
  • Un grand pas fait environ un mètre.
  • Un pendule de 1 mètre de long effectue une oscillation complète (un aller-retour) en environ 2 secondes.

Multiples et sous-multiples du mètre

[modifier | modifier le code]
Multiples et sous-multiples du mètre
Facteur Nom préfixé Symbole Nombre en français[b] Nombre en mètres
1030 quettamètre Qm quintillion 1 000 000 000 000 000 000 000 000 000 000
1027 ronnamètre Rm quadrilliard 1 000 000 000 000 000 000 000 000 000
1024 yottamètre Ym quadrillion 1 000 000 000 000 000 000 000 000
1021 zettamètre Zm trilliard 1 000 000 000 000 000 000 000
1018 examètre Em trillion 1 000 000 000 000 000 000
1015 pétamètre Pm billiard 1 000 000 000 000 000
1012 téramètre Tm billion 1 000 000 000 000
109 gigamètre Gm milliard 1 000 000 000
106 mégamètre Mm million 1 000 000
103 kilomètre km mille 1 000
102 hectomètre hm cent 100
101 décamètre dam dix 10
100 mètre m un 1
10-1 décimètre dm dixième 0,1
10-2 centimètre cm centième 0,01
10-3 millimètre mm millième 0,001
10–6 micromètre μm millionième 0,000 001
10–9 nanomètre nm milliardième 0,000 000 001
10-12 picomètre pm billionième 0,000 000 000 001
10-15 femtomètre fm billiardième 0,000 000 000 000 001
10-18 attomètre am trillionième 0,000 000 000 000 000 001
10-21 zeptomètre zm trilliardième 0,000 000 000 000 000 000 001
10-24 yoctomètre ym quadrillionième 0,000 000 000 000 000 000 000 001
10-27 rontomètre rm quadrilliardième 0,000 000 000 000 000 000 000 000 001
10-30 quectomètre qm quintillionième 0,000 000 000 000 000 000 000 000 000 001
Anciens multiples et sous-multiples du mètre
Facteur Nom préfixé Symbole Nombre en français Nombre en mètres
104 myriamètre[40] mam dix mille 10 000
10-4 décimillimètre[41] dmm dix millième 0,000 1

Description de multiples

[modifier | modifier le code]

De fait, au-delà du milliard de kilomètres on utilise rarement l'unité standard : on lui préfère l'unité astronomique (ua), d'où est déduite l'unité dérivée, le parsec : ceci était nécessaire pour ne pas dénaturer les mesures précises de distance de parallaxe par une réévaluation de l'ua, liée à la valeur de la constante gravitationnelle (G). Cette situation peu œcuménique a été levée par les mesures directes par écho radar sur les planètes.

Décamètre
dam = 10 m.
Cette unité est adaptée au calcul de la superficie d'un terrain, par le biais de l'are, superficie, par exemple, d'un carré d'un décamètre de côté.
Hectomètre
hm = 100 m.
Cette unité est adaptée au calcul de la superficie d'une terre agricole, par le biais de l'hectare, superficie, par exemple, d'un carré d'un hectomètre de côté.
Kilomètre
km = 1 000 m.
C'est le multiple du mètre le plus fréquemment utilisé pour mesurer les distances terrestres (comme entre les villes). Le long des routes, les bornes kilométriques sont placées tous les kilomètres.
Myriamètre
1 mam = 10 000 m.
Il équivaut à 10 km. Cette unité est obsolète.
Mégamètre
Mm = 1 × 106 m = 1 000 000 m.
C'est une unité de mesure adaptée pour le diamètre des planètes. La Terre mesure par exemple environ 12,8 mégamètres de diamètre.
Il équivaut à 1 000 km, soit 1 × 103 km.
Gigamètre
Gm = 1 × 109 m = 1 000 000 000 m.
C'est un multiple du mètre utilisé pour mesurer les distances interplanétaires courtes, par exemple entre une planète et ses satellites naturels. La Lune orbite à 0,384 gigamètre de la Terre (environ 1,3 seconde-lumière).
On peut également s'en servir pour exprimer le diamètre des étoiles (environ 1,39 gigamètres pour le Soleil).
Une unité astronomique représente approximativement 150 gigamètres.
Il équivaut à 1 million de kilomètres, soit 1 × 106 km.
Téramètre
Tm = 1 × 1012 m = 1 000 000 000 000 m.
C'est un multiple du mètre utilisé pour mesurer les grandes distances interplanétaires. Par exemple la planète naine Pluton orbite à une moyenne de 5,9 téramètres du Soleil.
Il équivaut à 1 milliard de kilomètres, soit 1 × 109 km.
Pétamètre
Pm = 1 × 1015 m = 1 000 000 000 000 000 m.
Une année-lumière vaut environ 9,47 Pm
Proxima Centauri, l'étoile la plus proche, est située à environ 40 pétamètres du Soleil.
C'est une bonne unité de mesure de la taille des nébuleuses.
Examètre
Em = 1 × 1018 m = 1 000 000 000 000 000 000 m.
Un examètre représente environ 106 années-lumière.
Un amas globulaire mesure environ un examètre de diamètre.
C'est une distance interstellaire typique dans la périphérie galactique.
Zettamètre
Zm = 1 × 1021 m = 1 000 000 000 000 000 000 000 m.
Un zettamètre représente environ 105 700 années-lumière.
La Voie lactée (notre galaxie) mesure à peu près cette taille, une vingtaine de zettamètres la sépare de la galaxie d'Andromède.
Yottamètre
Ym = 1 × 1024 m = 1 000 000 000 000 000 000 000 000 m.
Un yottamètre représente environ 105,7 millions d'années-lumière.
C'est une bonne unité de mesure des distances entre galaxies lointaines ou pour la taille des superamas.
Les objets les plus lointains de l'Univers sont situés à environ 130 yottamètres. Z8 GND 5296, découverte en 2013, serait la galaxie la plus éloignée de la nôtre[42] et la plus vieille actuellement connue. En effet, elle se situe à 13,1 milliards d'années-lumière soit environ 124 yottamètres.
Ronnamètre
Rm = 1 × 1027 m = 1 000 000 000 000 000 000 000 000 000 m.
Un ronnamètre représente environ 105,7 milliards d'années-lumière.
Le diamètre de l'Univers observable est estimé à 0,88 Rm.
Quettamètre
Qm = 1 × 1030 m = 1 000 000 000 000 000 000 000 000 000 000 m.
Un quettamètre représente environ 105 700 milliards d'années-lumière, soit 1,1 millier de fois le diamètre de l'Univers observable (0,000 88 Qm).

Description des sous-multiples

[modifier | modifier le code]
Décimètre
dm = 0,1 m.
Au cours du XXe siècle, la règle graduée standard des écoliers était le double-décimètre (2 dm = 20 cm) et les programmes scolaires se référaient à cette appellation.
Centimètre
cm = 0,01 m.
Le centimètre est une des unités de base du système CGS.
Millimètre
mm = 1 × 10−3 m = 0,001 m.
Une représentation graphique manuelle précise nécessite l'utilisation de papier millimétré.
Décimillimètre
1 dmm = 1 × 10−4 m = 0,000 1 m.
Cette unité est obsolète.
Micromètre
µm = 1 × 10−6 m = 0,000 001 m.
Le micromètre était autrefois appelé « micron » (symbole : µ). L'utilisation du terme « micron » a été bannie par la 13e CGPM en 1968.
Cette unité est utilisée pour exprimer la taille des cellules.
Nanomètre
nm = 1 × 10−9 m = 0,000 000 001 m.
Le nanomètre est utilisé pour mesurer les longueurs d'onde plus courtes que celle de l'infrarouge (visible, ultraviolet et rayons X) et la finesse de gravure d'un microprocesseur. La limite théorique qui fait la frontière entre la micro-électronique et la nanoélectronique est une finesse de gravure de 100 nm. Les rayons atomiques varient entre 0,025 et 0,2 nm.
Le nanomètre est aussi l'unité de mesure traditionnelle de la rugosité, contrôle de l'état de surface (métrologie dimensionnelle)
Les virus mesurent quelques dizaines ou centaines de nanomètres.
Picomètre
pm = 1 × 10−12 m = 0,000 000 000 001 m.
Cette unité est de plus en plus utilisée pour mesurer les longueurs des liaisons atomiques à la place de l'ångström. 1 Å = 100 pm.
Femtomètre
fm = 1 × 10−15 m = 0,000 000 000 000 001 m.
Le femtomètre fut d'abord nommé « fermi » en l'honneur du physicien italien Enrico Fermi (le fermi comme tel ne fait pas partie du Système international).
Le femtomètre est fréquemment utilisé pour mesurer le diamètre d'un noyau atomique. Le diamètre d'un noyau atomique peut aller jusqu'à 15 fm.
Attomètre
am = 1 × 10−18 m = 0,000 000 000 000 000 001 m.
La taille maximale d'un quark est estimée à un attomètre.
Zeptomètre
zm = 1 × 10−21 m = 0,000 000 000 000 000 000 001 m.
Cette unité a un intérêt croissant au sein de la communauté scientifique. En effet, le domaine de l'infiniment petit étant en plein essor, des unités de plus en plus petites sont utilisées, par exemple dans le cadre de l'étude des particules.
Yoctomètre
ym = 1 × 10−24 m = 0,000 000 000 000 000 000 000 001 m.
Un yoctomètre est 62 milliards de fois supérieur à la longueur de Planck = 1,616 252 × 10−35 m = 0,000 000 000 000 000 000 000 000 000 000 000 016 m.
Rontomètre
rm = 1 × 10−27 m = 0,000 000 000 000 000 000 000 000 001 m.
Un rontomètre est 62 millions de fois supérieur à la longueur de Planck (1,616 252 × 10−35 m).
Quectomètre
qm = 1 × 10−30 m = 0,000 000 000 000 000 000 000 000 000 001 m.
Un quectomètre est 62 000 fois supérieur à la longueur de Planck (1,616 252 × 10−35 m).

Multiples sans préfixes

[modifier | modifier le code]
Ångström
Å = 1 × 10−10 m = 0,000 000 000 1 m.
Cette unité de mesure, qui ne fait pas partie du Système international, est anciennement utilisée pour mesurer les rayons atomiques.

Notes et références

[modifier | modifier le code]
  1. À l'époque un quart de méridien, car celui-ci était considéré comme faisant le tour de la Terre. Aujourd'hui un méridien va du pôle Nord au pôle Sud, si bien que le mètre est approximativement égal à la 10 000 000e partie d'un demi-méridien.
  2. L'échelle longue utilisée ici est la référence dans les pays francophones, notamment en France, au Canada, ainsi que généralement en Europe (sauf au Royaume-Uni). L'échelle courte est utilisée avant tout par les États-Unis, le Brésil, la Grande-Bretagne et les autres pays de langue anglaise (sauf le Canada).
  1. Le terme boréal de la base de Melun est à Lieusaint ; terme austral est à Melun[5].
  2. Le terme boréal de la base de Perpignan est à Salses ; son terme austral est à Le Vernet[5].
  3. La délégation est composée de Laplace, qui la préside, et de Brisson, Darcet, Delambre, Lagrange, Lefèvre-Gineau, Legendre et Méchain[12].

Références

[modifier | modifier le code]
  1. Informations lexicographiques et étymologiques de « mètre » (sens Étymol. et Hist. - 2) dans le Trésor de la langue française informatisé, sur le site du Centre national de ressources textuelles et lexicales.
  2. « Résolution 1 de la 17e réunion de la CGPM (1983) – Définition du mètre », sur le site du Bureau international des poids et mesures, bipm.org. ; version [PDF], p. 97.
  3. Ten et Castro 1993, § 1, p. 147.
  4. Lagrange, Borda, Laplace, Monge et Condorcet, Rapport sur le choix d'une unité de mesure, Académie des sciences, 19 mars 1791 / Talleyrand, Projet de décret sur l'unité de mesure adopté par l'Assemblée Nationale, 26 mars 1791, Archives Parlementaires de 1787 à 1860, Tome XXIV, p. 394-397 / p. 379.
  5. a b c d e et f Capderou 2011, chap. 2, sect. 2.3, § 2.3.2, p. 46.
  6. Capderou 2011, chap. 2, sect. 2.3, § 2.3.2, p. 46, n. 17.
  7. Borda et Brisson, Rapport sur la vérification du mètre qui doit servir d'étalon pour la fabrication des mesures provisoires, 18 Messidor and 3 (6 Juillet 1795), Jean-Baptiste Delambre, Pierre Méchain, Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone. T. 3, Paris, 1806-1810., p. 673-685.
  8. Borda, Lagrange, Condorcet, Laplace, Rapport à l'Académie des Sciences sur l'unité des Poids et sur la nomenclature de ses division, 19 janvier 1793, Annales de chimie, Paris, 1793, Volume 16, p. 267-268.
  9. Décret du 1er août 1793, Présidence Danton, Rapporteur Arbogast, Convention Nationale, Archives Parlementaires de 1787 à 1860, Tome LXX, p. 71.
  10. Décret 18 germinal ans III (7 avril 1795), fondé sur le rapport sur la nécessité et les moyens d'introduire les nouveaux poids et mesures dans la République, 11 ventose an 3 (1er mars 1795) et son projet de décret, président Boissy d'Anglas, rapporteur Prieur de la Côte d'Or, p. 186-188 et 193-196.
  11. Etalon prototype du mètre avec son étui fabriqué par Lenoir, platine, 1799. Archives Nationales AE/I/23/10.
  12. a et b Marquet, Le Bouch et Roussel 1996, p. 70.
  13. Loi du 19 frimaire an 8 - 10 décembre 1799, Poids et mesures, Dictionnaire général d'administration: E-V, Paul Dupont, 1847, p. 1373.
  14. Mètre définitif, Jean-Baptiste Delambre, Pierre Méchain, Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone. T. 3, Paris, 1806-1810, p. 691-693, pp. 139, 228.
  15. Résolution 6 de la 11e CGPM, 1960, Bureau international des poids et mesures.
  16. Résolution 1 de la 17e CGPM, 1983, Bureau international des poids et mesures.
  17. Résolution 1 de la 26e CGPM, 2018, Bureau international des poids et mesures.https://www.bipm.org/fr/CGPM/db/26/1/.
  18. Michèle Audin, Géométrie, mesurer la terre, mesurer la Terre ?, CNRS, Images de mathématiques, 2019. .
  19. Lucien Gallois, L'académie des sciences et les origines de la carte de Cassini. In: Annales de Géographie, t. 18, no 100, 1909. pp. 289-310.
  20. Vincent Deparis, La forme de la Terre : plate, oblongue ou aplatie aux pôles ?, Planet Terre, Eduscol, 2001.
  21. M. de la Condamine, Nouveau projet d'une mesure invariable propre à servir de mesure commune à toutes les nations, Académie royale des sciences, Année 1747.
  22. Rob Iliffe, Ce que Newton connut sans sortir de chez lui : Maupertuis et la forme de la terre dans les années 1730, Histoire & Mesure, 1993, Vol. 8, no 3-4, p. 355-386.
  23. César-François Cassini de Thury, La méridienne de l’Observatoire Royal de Paris, 1744.
  24. a et b Suzanne Débarbat et Terry Quinn, « Les origines du système métrique en France et la Convention du mètre de 1875, qui a ouvert la voie au Système international d'unités et à sa révision de 2018 », Comptes Rendus Physique, the new International System of Units / Le nouveau Système international d’unités, vol. 20, no 1,‎ , p. 6–21 (ISSN 1631-0705, DOI 10.1016/j.crhy.2018.12.002, lire en ligne, consulté le ).
  25. César-François Cassini de Thury, Avertissement ou Introduction à la carte générale et particulière de la France, 1784.
  26. Jean-Pierre Martin et Anita McConnell, « Joining the observatories of Paris and Greenwich », Notes and Records of the Royal Society, vol. 62, no 4,‎ , p. 355–372 (DOI 10.1098/rsnr.2008.0029, lire en ligne, consulté le )
  27. Serge Mehl, Géodésie & triangulation.
  28. Compte rendu par l'Académie des Sciences à la Convention Nationale de l'état des travaux entrepris pour parvenir à l'uniformité des poids et mesures, 25 novembre 1792, p. 255-267.
  29. Léon Chauvin, Histoire du mètre d'après les travaux et rapports de Delambre, Méchain, Van Swinden, E. Ardant, Limoges, 1901, p. 74.
  30. Damien Gayet, Un homme à la mesure du mètre - II (Joseph Delambre), CNRS, Images de mathématiques, 2012.
  31. Jean-Baptiste Delambre, Pierre Méchain, Discours préliminaire, Base du système métrique décimal, ou Mesure de l'arc du méridien compris entre les parallèles de Dunkerque et Barcelone. T. 1, Paris, 1806-1810, p. 94.
  32. a b et c « History – The BIPM 150 » (consulté le )
  33. Procès-verbaux de la Conférence géodésique internationale pour la mesure des degrés en Europe, réunie à Berlin du 30 septembre au 7 octobre 1867., Neuchâtel,, 1867. (lire en ligne). p. 22
  34. Adolphe Hirsch, Comptes-rendus des séances de la Commission permanente de l'Association géodésique internationale réunie à Florence du 8 au 17 octobre 1891, De Gruyter, Incorporated, (ISBN 978-3-11-128691-4, lire en ligne), p. 101-109
  35. a b c d et e Le Système international d'unités (SI), Sèvres, Bureau international des poids et mesures, , 9e éd., 216 p. (ISBN 978-92-822-2272-0, lire en ligne [PDF]).
  36. « Le mètre, l'aventure continue... » (consulté le ).
  37. Robert P. Crease, « Charles Sanders Peirce and the first absolute measurement standard », Physics Today, vol. 62, no 12,‎ , p. 39–44 (ISSN 0031-9228, DOI 10.1063/1.3273015, lire en ligne, consulté le )
  38. « Afnor FD X 02-003, § 6.3, mai 2013 – Normes fondamentales – Principes de l'écriture des nombres, des grandeurs, des unités et des symboles », sur afnor.org, Afnor (consulté le ).
  39. « Le Système international d'unités 9e édition, 2019 – § 5.4.2 Symboles des grandeurs et unités », sur bipm.org, Bureau international des poids et mesures (consulté le ), p. 37 [PDF].
  40. Décret no 14608 du 26 juillet 1919, portant règlement d'administration publique pour l'exécution de la loi du 2 avril 1919 sur les unités de mesure.
  41. Louis François Thomassin, Instructions sur les nouvelles mesures, Latour, 1801.
  42. (en) « Z8-GND-5296: Most Distant Galaxy Yet Discovered », sur Sci-News.com, (consulté le ).

Bibliographie

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]

Sur les autres projets Wikimedia :

Liens externes

[modifier | modifier le code]

Bases de données et dictionnaires

[modifier | modifier le code]