Skip to content

sacred config for faster rcnn #1358

New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Merged
merged 25 commits into from
Jul 8, 2020
Merged
Show file tree
Hide file tree
Changes from 1 commit
Commits
Show all changes
25 commits
Select commit Hold shift + click to select a range
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Prev Previous commit
Next Next commit
docstring
  • Loading branch information
Jerryzcn committed May 6, 2020
commit 3c2cac8795101001e950da881ccf186141b2665f
10 changes: 6 additions & 4 deletions gluoncv/model_zoo/rcnn/faster_rcnn/data_parallel.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
"""Data parallel task for Faster RCNN Model."""

from mxnet import autograd
from mxnet.contrib import amp

Expand All @@ -23,7 +25,7 @@ def forward_backward(self, x):
gt_label = label[:, :, 4:5]
gt_box = label[:, :, :4]
cls_pred, box_pred, roi, samples, matches, rpn_score, rpn_box, anchors, cls_targets, \
box_targets, box_masks, _ = self.net(data, gt_box, gt_label)
box_targets, box_masks, _ = self.net(data, gt_box, gt_label)
# losses of rpn
rpn_score = rpn_score.squeeze(axis=-1)
num_rpn_pos = (rpn_cls_targets >= 0).sum()
Expand All @@ -37,9 +39,9 @@ def forward_backward(self, x):
num_rcnn_pos = (cls_targets >= 0).sum()
rcnn_loss1 = self.rcnn_cls_loss(
cls_pred, cls_targets, cls_targets.expand_dims(-1) >= 0) * cls_targets.size / \
num_rcnn_pos
num_rcnn_pos
rcnn_loss2 = self.rcnn_box_loss(box_pred, box_targets, box_masks) * box_pred.size / \
num_rcnn_pos
num_rcnn_pos
rcnn_loss = rcnn_loss1 + rcnn_loss2
# overall losses
total_loss = rpn_loss.sum() * self.mix_ratio + rcnn_loss.sum() * self.mix_ratio
Expand All @@ -60,4 +62,4 @@ def forward_backward(self, x):
total_loss.backward()

return rpn_loss1_metric, rpn_loss2_metric, rcnn_loss1_metric, rcnn_loss2_metric, \
rpn_acc_metric, rpn_l1_loss_metric, rcnn_acc_metric, rcnn_l1_loss_metric
rpn_acc_metric, rpn_l1_loss_metric, rcnn_acc_metric, rcnn_l1_loss_metric
12 changes: 7 additions & 5 deletions gluoncv/model_zoo/rcnn/mask_rcnn/data_parallel.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
"""Data parallel task for Mask RCNN Model."""

import mxnet as mx
from mxnet import autograd
from mxnet.contrib import amp
Expand All @@ -24,7 +26,7 @@ def forward_backward(self, x):
gt_label = label[:, :, 4:5]
gt_box = label[:, :, :4]
cls_pred, box_pred, mask_pred, roi, samples, matches, rpn_score, rpn_box, anchors, \
cls_targets, box_targets, box_masks, indices = self.net(data, gt_box, gt_label)
cls_targets, box_targets, box_masks, indices = self.net(data, gt_box, gt_label)
# losses of rpn
rpn_score = rpn_score.squeeze(axis=-1)
num_rpn_pos = (rpn_cls_targets >= 0).sum()
Expand All @@ -39,9 +41,9 @@ def forward_backward(self, x):
num_rcnn_pos = (cls_targets >= 0).sum()
rcnn_loss1 = self.rcnn_cls_loss(
cls_pred, cls_targets, cls_targets.expand_dims(-1) >= 0) * cls_targets.size / \
num_rcnn_pos
num_rcnn_pos
rcnn_loss2 = self.rcnn_box_loss(box_pred, box_targets, box_masks) * box_pred.size / \
num_rcnn_pos
num_rcnn_pos
rcnn_loss = rcnn_loss1 + rcnn_loss2

# generate targets for mask
Expand Down Expand Up @@ -81,5 +83,5 @@ def forward_backward(self, x):
total_loss.backward()

return rpn_loss1_metric, rpn_loss2_metric, rcnn_loss1_metric, rcnn_loss2_metric, \
mask_loss_metric, rpn_acc_metric, rpn_l1_loss_metric, rcnn_acc_metric, \
rcnn_l1_loss_metric, rcnn_mask_metric, rcnn_fgmask_metric
mask_loss_metric, rpn_acc_metric, rpn_l1_loss_metric, rcnn_acc_metric, \
rcnn_l1_loss_metric, rcnn_mask_metric, rcnn_fgmask_metric