Skip to content

reyhanquayum/Containerized-Object-Detection

 
 

Repository files navigation

Lint-free Machine Learning Client CI Web App CI

Containerized Real-time Object Detection App

Description

This project is a containerized web application designed for real-time object detection using machine learning. The system is built with Flask for the frontend, a YOLOv5-based ML client for object detection, and MongoDB for backend data storage. This project demonstrates the power of Dockerized microservices for deploying scalable and modular systems.

Team members

Reyhan Abdul Quayum Rashed Alneyadi Sia Chen Yu Zhang

Architecture

               +------------------+
               |   User Uploads   |
               +------------------+
                        |
                        v
+------------------+  HTTP  +---------------------+
|   Flask Web App  |<------>|  ML Client (YOLOv5) |
+------------------+         +---------------------+
        |                               |
        |                               v
        +-----------------> MongoDB <---+
                         Store & Retrieve

Folder Structure

4-containers-financiers/
├── machine-learning-client/   # ML Client Service
│   ├── app.py                 # Flask app for YOLOv5 processing
│   ├── Dockerfile             # Docker configuration
│   └── requirements.txt       # Python dependencies
├── web-app/                   # Flask Web App
│   ├── app.py                 # Web interface and API endpoints
│   ├── test_app.py            # Pytest test suite
│   ├── Dockerfile             # Docker configuration
│   ├── templates/             # HTML templates
│   └── requirements.txt       # Python dependencies
├── docker-compose.yml         # Multi-container setup
└── README.md                  # Project documentation

Setup Instructions

Prerequisites

  • Docker Desktop

Installation

  1. Clone the repo:
git clone https://github.com/software-students-fall2024/4-containers-financiers.git
cd 4-containers-financiers
  1. Build and start the containers with Docker Compose
docker-compose up --build
  1. Access the Web App.

You should be able to locally access web-app running on http://127.0.0.1:5000/

Thank you!

About

Containerized real-time ML object detection web application using Docker

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 72.6%
  • HTML 24.3%
  • Dockerfile 3.1%