Skip to content
geeksforgeeks
  • Tutorials
    • Python
    • Java
    • Data Structures & Algorithms
    • ML & Data Science
    • Interview Corner
    • Programming Languages
    • Web Development
    • CS Subjects
    • DevOps And Linux
    • Software and Tools
    • School Learning
    • Practice Coding Problems
  • Go Premium
  • Data preprocessing
  • Data Manipulation
  • Data Analysis using Pandas
  • EDA
  • Pandas Exercise
  • Pandas AI
  • Numpy
  • Matplotlib
  • Plotly
  • Data Analysis
  • Machine Learning
  • Data science
Open In App
Next Article:
Pandas DataFrame.columns
Next article icon

Randomly Select Columns from Pandas DataFrame

Last Updated : 28 Mar, 2022
Comments
Improve
Suggest changes
Like Article
Like
Report

In this article, we will discuss how to randomly select columns from the Pandas Dataframe.

According to our requirement, we can randomly select columns from a pandas Database method where pandas df.sample() method helps us randomly select rows and columns.

Syntax of pandas sample() method:

Return a random selection of elements from an object's axis. For repeatability, you may use the random_state parameter.

DataFrame.sample(n=None, frac=None, replace=False, weights=None, random_state=None, axis=None)

Parameters:

  • n: int value, Number of random rows to generate.
  • frac: Float value, Returns (float value * length of data frame values ). frac cannot be used with n.
  • replace: Boolean value, return sample with replacement if True.
  • random_state: int value or numpy.random.RandomState, optional. if set to a particular integer, will return same rows as sample in every iteration.
  • axis: 0 or ‘row’ for Rows and 1 or ‘column’ for Columns.

Method 1: Select a single column at random

In this approach firstly the Pandas package is read with which the given CSV file is imported using pd.read_csv() method is used to read the dataset. df.sample() method is used to randomly select rows and columns. axis =' columns' says that we're selecting columns. when "n" isn't specified the method returns one random column by default.

To download the CSV file click here

Python3
# import packages
import pandas as pd

# reading csv file
df =pd.read_csv('fossilfuels.csv')
pd.set_option('display.max_columns', None)
print(df.head())

# randomly selecting columns
df = df.sample(axis='columns')
print(df)

Output:

Method 2: Select a number of columns at a random state

In this approach, If the user wants to select a certain number of columns more than 1 we use the parameter 'n' for this purpose. In the below example, we give n as 5. randomly selecting 5 columns from the database. 

Python3
# import packages
import pandas as pd

# reading csv file
df =pd.read_csv('fossilfuels.csv')
pd.set_option('display.max_columns', None)
print(df.head())
print()

# randomly selecting columns
df = df.sample(n=5, axis='columns')
print(df.head())

Output:

Method 3: Allow a random selection of the same column more than once (by setting replace=True)

Here, in this approach, If the user wants to select a column more than once, or if repeatability is needed in our selection we should set the replace parameter to 'True' in the df.sample() method. Column 'Bunkerfields' is repeated twice.

Python3
# import packages
import pandas as pd

# reading csv file
df =pd.read_csv('fossilfuels.csv')
pd.set_option('display.max_columns', None)
print(df.head())
print()

# randomly selecting columns
df = df.sample(n=5, axis='columns',replace='True')
print(df.head())

Output:

Method 4: Select a portion of the total number of columns at random:

Here in this approach, if the user wants to select a portion of the dataset, the frac parameter should be used. In the below example our dataset has 10 columns. 0.25 of 10 is 2.5, it is further rounded to 2. A year and GasFlaring columns are returned. 

Python3
# import packages
import pandas as pd

# reading csv file
df =pd.read_csv('fossilfuels.csv')
pd.set_option('display.max_columns', None)
print(df.head())
print()

# randomly selecting columns
df = df.sample(frac=0.25, axis='columns')
print(df.head())

Output:


Next Article
Pandas DataFrame.columns

L

lizzywizzy366
Improve
Article Tags :
  • Python
  • Geeks Premier League
  • Geeks-Premier-League-2022
  • Python-pandas
  • Python pandas-dataFrame
  • Python Pandas-exercise
Practice Tags :
  • python

Similar Reads

    How to Randomly Select rows from Pandas DataFrame
    In Pandas, it is possible to select rows randomly from a DataFrame with different methods. Randomly selecting rows can be useful for tasks like sampling, testing or data exploration.Creating Sample Pandas DataFrameFirst, we will create a sample Pandas DataFrame that we will use further in our articl
    3 min read
    How to Randomly Select rows from Pandas DataFrame
    In Pandas, it is possible to select rows randomly from a DataFrame with different methods. Randomly selecting rows can be useful for tasks like sampling, testing or data exploration.Creating Sample Pandas DataFrameFirst, we will create a sample Pandas DataFrame that we will use further in our articl
    3 min read
    Pandas DataFrame.columns
    In Pandas, DataFrame.columns attribute returns the column names of a DataFrame. It gives access to the column labels, returning an Index object with the column labels that may be used for viewing, modifying, or creating new column labels for a DataFrame.Note: This attribute doesn't require any param
    2 min read
    Pandas DataFrame.columns
    In Pandas, DataFrame.columns attribute returns the column names of a DataFrame. It gives access to the column labels, returning an Index object with the column labels that may be used for viewing, modifying, or creating new column labels for a DataFrame.Note: This attribute doesn't require any param
    2 min read
    How to select multiple columns in a pandas dataframe
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier. In this article, we will discuss all the different ways of selecting multiple columns
    5 min read
    How to select multiple columns in a pandas dataframe
    Python is a great language for doing data analysis, primarily because of the fantastic ecosystem of data-centric Python packages. Pandas is one of those packages and makes importing and analyzing data much easier. In this article, we will discuss all the different ways of selecting multiple columns
    5 min read
`; $(commentSectionTemplate).insertBefore(".article--recommended"); } loadComments(); }); }); function loadComments() { if ($("iframe[id*='discuss-iframe']").length top_of_element && top_of_screen articleRecommendedTop && top_of_screen articleRecommendedBottom)) { if (!isfollowingApiCall) { isfollowingApiCall = true; setTimeout(function(){ if (loginData && loginData.isLoggedIn) { if (loginData.userName !== $('#followAuthor').val()) { is_following(); } else { $('.profileCard-profile-picture').css('background-color', '#E7E7E7'); } } else { $('.follow-btn').removeClass('hideIt'); } }, 3000); } } }); } $(".accordion-header").click(function() { var arrowIcon = $(this).find('.bottom-arrow-icon'); arrowIcon.toggleClass('rotate180'); }); }); window.isReportArticle = false; function report_article(){ if (!loginData || !loginData.isLoggedIn) { const loginModalButton = $('.login-modal-btn') if (loginModalButton.length) { loginModalButton.click(); } return; } if(!window.isReportArticle){ //to add loader $('.report-loader').addClass('spinner'); jQuery('#report_modal_content').load(gfgSiteUrl+'wp-content/themes/iconic-one/report-modal.php', { PRACTICE_API_URL: practiceAPIURL, PRACTICE_URL:practiceURL },function(responseTxt, statusTxt, xhr){ if(statusTxt == "error"){ alert("Error: " + xhr.status + ": " + xhr.statusText); } }); }else{ window.scrollTo({ top: 0, behavior: 'smooth' }); $("#report_modal_content").show(); } } function closeShareModal() { const shareOption = document.querySelector('[data-gfg-action="share-article"]'); shareOption.classList.remove("hover_share_menu"); let shareModal = document.querySelector(".hover__share-modal-container"); shareModal && shareModal.remove(); } function openShareModal() { closeShareModal(); // Remove existing modal if any let shareModal = document.querySelector(".three_dot_dropdown_share"); shareModal.appendChild(Object.assign(document.createElement("div"), { className: "hover__share-modal-container" })); document.querySelector(".hover__share-modal-container").append( Object.assign(document.createElement('div'), { className: "share__modal" }), ); document.querySelector(".share__modal").append(Object.assign(document.createElement('h1'), { className: "share__modal-heading" }, { textContent: "Share to" })); const socialOptions = ["LinkedIn", "WhatsApp","Twitter", "Copy Link"]; socialOptions.forEach((socialOption) => { const socialContainer = Object.assign(document.createElement('div'), { className: "social__container" }); const icon = Object.assign(document.createElement("div"), { className: `share__icon share__${socialOption.split(" ").join("")}-icon` }); const socialText = Object.assign(document.createElement("span"), { className: "share__option-text" }, { textContent: `${socialOption}` }); const shareLink = (socialOption === "Copy Link") ? Object.assign(document.createElement('div'), { role: "button", className: "link-container CopyLink" }) : Object.assign(document.createElement('a'), { className: "link-container" }); if (socialOption === "LinkedIn") { shareLink.setAttribute('href', `https://www.linkedin.com/sharing/share-offsite/?url=${window.location.href}`); shareLink.setAttribute('target', '_blank'); } if (socialOption === "WhatsApp") { shareLink.setAttribute('href', `https://api.whatsapp.com/send?text=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } if (socialOption === "Twitter") { shareLink.setAttribute('href', `https://twitter.com/intent/tweet?url=${window.location.href}`); shareLink.setAttribute('target', "_blank"); } shareLink.append(icon, socialText); socialContainer.append(shareLink); document.querySelector(".share__modal").appendChild(socialContainer); //adding copy url functionality if(socialOption === "Copy Link") { shareLink.addEventListener("click", function() { var tempInput = document.createElement("input"); tempInput.value = window.location.href; document.body.appendChild(tempInput); tempInput.select(); tempInput.setSelectionRange(0, 99999); // For mobile devices document.execCommand('copy'); document.body.removeChild(tempInput); this.querySelector(".share__option-text").textContent = "Copied" }) } }); // document.querySelector(".hover__share-modal-container").addEventListener("mouseover", () => document.querySelector('[data-gfg-action="share-article"]').classList.add("hover_share_menu")); } function toggleLikeElementVisibility(selector, show) { document.querySelector(`.${selector}`).style.display = show ? "block" : "none"; } function closeKebabMenu(){ document.getElementById("myDropdown").classList.toggle("show"); }
geeksforgeeks-footer-logo
Corporate & Communications Address:
A-143, 7th Floor, Sovereign Corporate Tower, Sector- 136, Noida, Uttar Pradesh (201305)
Registered Address:
K 061, Tower K, Gulshan Vivante Apartment, Sector 137, Noida, Gautam Buddh Nagar, Uttar Pradesh, 201305
GFG App on Play Store GFG App on App Store
Advertise with us
  • Company
  • About Us
  • Legal
  • Privacy Policy
  • In Media
  • Contact Us
  • Advertise with us
  • GFG Corporate Solution
  • Placement Training Program
  • Languages
  • Python
  • Java
  • C++
  • PHP
  • GoLang
  • SQL
  • R Language
  • Android Tutorial
  • Tutorials Archive
  • DSA
  • Data Structures
  • Algorithms
  • DSA for Beginners
  • Basic DSA Problems
  • DSA Roadmap
  • Top 100 DSA Interview Problems
  • DSA Roadmap by Sandeep Jain
  • All Cheat Sheets
  • Data Science & ML
  • Data Science With Python
  • Data Science For Beginner
  • Machine Learning
  • ML Maths
  • Data Visualisation
  • Pandas
  • NumPy
  • NLP
  • Deep Learning
  • Web Technologies
  • HTML
  • CSS
  • JavaScript
  • TypeScript
  • ReactJS
  • NextJS
  • Bootstrap
  • Web Design
  • Python Tutorial
  • Python Programming Examples
  • Python Projects
  • Python Tkinter
  • Python Web Scraping
  • OpenCV Tutorial
  • Python Interview Question
  • Django
  • Computer Science
  • Operating Systems
  • Computer Network
  • Database Management System
  • Software Engineering
  • Digital Logic Design
  • Engineering Maths
  • Software Development
  • Software Testing
  • DevOps
  • Git
  • Linux
  • AWS
  • Docker
  • Kubernetes
  • Azure
  • GCP
  • DevOps Roadmap
  • System Design
  • High Level Design
  • Low Level Design
  • UML Diagrams
  • Interview Guide
  • Design Patterns
  • OOAD
  • System Design Bootcamp
  • Interview Questions
  • Inteview Preparation
  • Competitive Programming
  • Top DS or Algo for CP
  • Company-Wise Recruitment Process
  • Company-Wise Preparation
  • Aptitude Preparation
  • Puzzles
  • School Subjects
  • Mathematics
  • Physics
  • Chemistry
  • Biology
  • Social Science
  • English Grammar
  • Commerce
  • World GK
  • GeeksforGeeks Videos
  • DSA
  • Python
  • Java
  • C++
  • Web Development
  • Data Science
  • CS Subjects
@GeeksforGeeks, Sanchhaya Education Private Limited, All rights reserved
We use cookies to ensure you have the best browsing experience on our website. By using our site, you acknowledge that you have read and understood our Cookie Policy & Privacy Policy
Lightbox
Improvement
Suggest Changes
Help us improve. Share your suggestions to enhance the article. Contribute your expertise and make a difference in the GeeksforGeeks portal.
geeksforgeeks-suggest-icon
Create Improvement
Enhance the article with your expertise. Contribute to the GeeksforGeeks community and help create better learning resources for all.
geeksforgeeks-improvement-icon
Suggest Changes
min 4 words, max Words Limit:1000

Thank You!

Your suggestions are valuable to us.

What kind of Experience do you want to share?

Interview Experiences
Admission Experiences
Career Journeys
Work Experiences
Campus Experiences
Competitive Exam Experiences